

2020

Computer Controlled
Plant Environment
A-LEVEL OCR PROGRAMMING PROJECT
ADAM SEIDEL

OCR Programming Project Candidate Number:

1

Contents
Analysis .. 2

Research of existing solutions ... 3

Stakeholders .. 6

Solution Features ... 7

Limitations ... 8

Software and Hardware requirements .. 9

Success Criteria .. 10

Design .. 12

Development & Iterative Testing ... 17

OCR Programming Project Candidate Number:

2

Analysis
In my project I will be developing a fully automated greenhouse environment that will facilitate the
growth of plants in the most efficient way possible. This project on an expanded scale will enable garden
centers to optimize the growth of their plants with features that can automatically control the
temperature, humidity, light intensity, water, and soil nutrients of the plant environment. Another
possible user of my project will be scientists to investigate ideal conditions for plant growth and to
generate reports on historic conditions inside the environment. During scientific experiments it is
important to control many variables as not to effect results and this project will be able to keep desired
variables inside a very small window. Residents in harsh climates could also use this project to grow
plants that would not survive due to lack of sun light, rain, humidity, or temperature.

This will be achieved through feedback loops that will monitor various environmental readings and
respond accordingly to keep all the environmental variables within the optimal range. For my project I
will aim to create a small-scale green house with space for one plant. This greenhouse will link to a
raspberry pi that will be responsible for monitoring and controlling the environment whilst also
developing a GUI that will display graphs and readings from the greenhouse. The greenhouse will have
the ability to be remotely controlled either via a website or an app.

My proposed project is solvable using computation methods because it requires the constant
monitoring and adjustment of multiple environmental variables. In a low-tech solution, the greenhouse
would have to be controlled manually by a member of staff. This member of staff would be responsible
for continually checking sensors in the green house and then manually adjusting the conditions in the
green house. In this setup there are large periods of the day such as during the night where conditions
are left unmonitored. External environmental changes during this time could leave the plants left in
potentially fatal conditions. My project will be able to respond to these changes without the need for
external input and alert staff to any issues via the remotely controlled interface.

Using feedback loops it will be possible to keep the greenhouse in an almost constant environmental
state. My project will be able to process the many readings coming from sensors in the greenhouse and
simultaneously act upon these readings. This will be done in near real time and lead to a much-improved
accuracy over what a human could manually achieve. I anticipate that my greenhouse will generate vast
amounts of data that I can use to analyze the performance of plant growth. This data collected will be
on a new scale to what a human could ever manually record and will allow in depth graphs and metrics
to be displayed and calculated.

I will be creating a GUI that will aim to provide the user a visual representation of the readings being
generated by the sensors inside my automated plant environment. Key metrics will be displayed to the
user such as current temperature and humidity along with options that will allow for a manual override
of current conditions. Other potential features for my GUI include a graphs section showing long term
sensor data points in an easy and engaging way along with an option to automate condition changes at
certain times of the day. This automation of changes will allow the greenhouse to mimic a day with the
temperature rising during the day and falling during the nighttime. I will be conducting extra research
into how plants best develop and use this to ensure my project has the features required to facilitate
this development in an automated and efficient environment.

This project can expand with the addition of many complex features. However, at its core this project
will be a big jump in accuracy on current manual low-technology solutions. The time saved for

OCR Programming Project Candidate Number:

3

greenhouse managers will be large and the increased accuracy will provide an economic impact due to
more efficient plant growth. This will lead to an increased plant yield across a year and a reduced fatality
rate. The increased stream of data with a higher degree of accuracy to current standards will provide
users will the opportunity to discover the optimum parameters for various species to develop. The
reduced time required to monitor and grow plants will enable greenhouse owners to either cut staff or
to expand their operations with little ongoing costs as one member of staff would now be able to
manage a much larger soil area than before and the only upfront cost being another automated green
house.

Research of existing solutions
Existing project 1
https://maker.pro/pcb/projects/diy-build-mini-automated-greenhouse-microgreen
This project creates a mini automated greenhouse for
growing microgreens. The circuitry has a
microcontroller to read the sensors and adjust the
environment via the fan, water pump and growing
lights. Two sensors are used which are a moisture
sensor that detects the amount of water in the soil and
a combined temperature and humidity sensor. The
project has a main loop that constantly monitors the
readings from the sensors and then activates or
deactivates the various output devices to alter the
environment.

Advantages Disadvantages
• The program is very simple under 100

lines of codes and its relatively easy to
adapt the parameters.

• The developer has included a sleep
feature for the plans that turns off the
growing lamps during the night allowing
the plants to rest.

• All the output devices are either on or off
there is no ability to vary the fan speed or
light intensity.

• No readings from the sensors are stored
and no reports are generated to show
the historical conditions inside the
greenhouse.

• The project has no remote access feature
to allow the user to monitor and change
parameters from a wireless device.

Features to include
I will be taking inspiration from the physical design of this project as I like its simplicity along with the
ability to move the lid onto a new growing tray easily. In my project I will look to include a sleep function
for the plants to give them rest. Including this sleep feature will add another real-world feature to my
project. The sleep function could be used in real world implementations when growing plants efficiently
or in a laboratory setting when investigating optimum day light hours for plant growth. Ensuring all my
output devices have variable outputs will add an extra layer of complexity to my programming
implementation whilst also giving greater control over the environment. In a basic implementation such

OCR Programming Project Candidate Number:

4

as above the condition for turning on the fan is simply if the temperature drops below a predefined
value. Being able to vary the strength of the fan would allow for a feedback loop to be created where
the fan speed is varied based on the temperature. These feedback loops can be used with all the sensor
and output device pairings to exponentially increase or decrease the output to change the sensor
readings the further away the readings get from the desired value.
Existing project 2
https://autogrow.com/
Autogrow is a commercial greenhouse automation
solution company. They specialize in controlling all the
environmental variables inside a greenhouse on an
industrial scale. Plant run-off is measured to ensure
that the plants are being grown in a legally compliant
environment. The greenhouse can be remotely
controlled from any device and the system can send
alerts to managers when there’s a problem. Autogrow
focuses on retrofitting greenhouses with their
automated technology that can manage factors such as
vents, heating, cooling, lighting, temperature, CO2,
irrigation, and a retractable roof. They’re advertised
advantages of their system are decreased labor costs,
increased accuracy and increased quality and yield.
Other solutions produced by this company are for
automated indoor growing such as inside a shopping
center. This allows the owners to reduce time spent maintaining plants and not worry about their
decorative plants looking unhealthy / unkept.

Advantages Disadvantages
• The system controls every possible

environmental variable and can monitor
and log all this data.

• Remote access means the managers
don’t have to be at the physical
greenhouse location when making
settings changes.

• The alerts system makes sure problems
are dealt with quickly.

• The sensors are all very high tech. The
plant run-off monitoring especially
requires expensive equipment.

• There system is aimed at large industrial
greenhouses with no options for smaller
recreational setups.

Features to include
I liked the technical implementation of this project. There remote access feature makes the whole
automated environment much more useful in the real world and the alerts system draws the users’
attention only when human input is needed. Autogrow also base their sensor readings on relative
measurements. This means the readings from the sensor are adjusted to consider the outside
environment. This allows the controlled environment to be tailored to reflect the real-world conditions
for the plants. Whilst this feature is not needed for all plants it is useful for when you are growing plants
to eventually be kept outside the greenhouse. In my own project I’m going to include some sort of alerts
system either via email or mobile phone notification. These alerts will give a daily status update and
warnings when a failure or issue arises. Another feature I will implement is the remote access. This will
probably be through a website that will give the user full access to the system with full remote-control
ability.

OCR Programming Project Candidate Number:

5

Existing project 3
https://www.instructables.com/Automated-Greenhouse/
This HelHa Automated greenhouse system has
a website interface that connects to a MySql
database that stores all the data being
generated from the environment. The MySql
server is ran on a raspberry pi with python used
to update the database with new readings and
send signals via USB to the Arduino that is
responsible for the motors, sensors, and output
devices. The webserver is installed on Apache2
and has a basic main menu to show the live
measurements for the environment and a
devices state tab to show what the output
devices are currently doing. There is also a
commands and parameters page on the
website that allows the user to switch control
for each output device from manual to
automatic and set new values for the internal
temperature and soil moisture.

Advantages Disadvantages
• The project has well thought out layers.

The system architecture diagram below
from the project page shows the data
flow and hardware requirements. The
layers mean each section can be edited
and improved without effecting the other
layers.

• All the data being stored in a database
means it would be easy to generate
reports on the data from the sensors.

• The website interface makes it simple to
control the system without having to
install any apps or additional software.

• The website does not feature any login to
restrict access to only authorized users.

• The input boxes on the website are
directly passed and stored in the
database. This means there is a
possibility for SQL injection attacks.

OCR Programming Project Candidate Number:

6

Features to include
I liked the way this greenhouse is broken down into three layers shown in the system architecture
diagram above. I will design my project in distinct layers to allow me to make changes to each of the
layers without effecting the operation of the overall system. Using an object-oriented approach will help
to mold my project into distinct layers as I will be required to decompose my problem into various
classes. The website is also easily accessible for this project with no additional software required. I like
this simplicity so will look to produce a control website for my project to allow remote control of the
greenhouse. Unlike this project I will look to include some security features such as user login to avoid
unauthorized access to the system. The gui is simple to navigate but the developers of this project have
not made use of the vast amounts of data that is stored in their database. I will take inspiration from
there simple gui but aim to add features that make use of the thousands of sensor readings being
generated from the greenhouse. Such as producing graphs for past data and statistics such as mean and
range for the different data points.

Stakeholders
Stakeholder 1
Name: Elizabeth Allgar
Age: 43
Job: Computer Science Teacher

Why are they a suitable stakeholder?
Elizabeth Allgar is a recreational gardener who enjoys her hobby but struggles to find time during her
day to water and care for her plants. She is looking for ways to keep her plants but reduce the time she
must manage them. Elizabeth keeps her plants inside her classroom so has easy access to a power
supply but is away from her room during the long summer holidays and over the weekend. Elizabeth will
be able to give feedback from the view of a hobbyist and will be able to compare my system to her
current routine.

The stakeholder would like the following features:

• Alerts for when there are problems such as the watering system being out of water
• Be able to set how often the plants should be watered
• Have some example settings for different types of plants to help her when setting the

parameters such as a plant settings data base
• The system should react to changes in the room such as the air con being turned on or off

Stakeholder 2
Name: Tobias Lester
Age: 28
Job: Commercial Greenhouse owner

Why are they a suitable stakeholder?
Tobias works at a local greenhouse that specializes in high volume and low margin wholesale plant sales.
Having spoken to Tobias he has explained that they own a total of 3 large industrial sized greenhouses
that are constantly heated and watered. Currently whilst their system is digitalized there is no
automation, and the environment is still manually adjusted and controlled via a local onsite control
board. When watering is required the site manager on duty must go through the process of turning on

OCR Programming Project Candidate Number:

7

the watering system and then deactivating once watering is complete. My stakeholder has mentioned
this as a potential area of improvement as manually controlling the system does lead to regular human
error and makes it harder for them to grow a variety of plants as each will require different conditions.
Automating Tobias’ greenhouse will allow him to reduce his staff whilst also increasing the yield of the
company.

The stakeholder would like the following features:

• Automated water, light and temperature controls to reduce the dependency on staff
• An alerts system in case there is an unusual issue in the greenhouse that requires staff attention
• A reporting system that delivers Tobias easy to read graphical information informing him on

performance

Stakeholder 3
Name: Christopher Mastin
Age: 67
Job: Botanist

Why are they a suitable stakeholder?
Christopher works as a research botanist his work is based on investigating the optimal growing
conditions for plants and investigating which factors have the greatest impact on growth. Through his
many years of work Christopher has regularly been manually growing hundreds of plants at the same
time. Each plant receives slightly different conditions based on the investigation. To keep his
experiments, fair his team work tirelessly to control as many control variables as possible. However,
over the weekends when the university is closed this proves difficult. Being able to precisely control
each individual plant environment will reduce the uncertainty in his investigations and free up his teams’
time to manage a much larger number of plants at the same time.

The stakeholder would like the following features:

• The ability to manage multiple plant environments off one system
• Accurate reports to be generated for scientific analysis
• Accurate control of the environment with external effecting factors removed such as external

sunlight

Solution Features
Required Features Desirable Features
The system must be able to automatically control
the internal environment continually without any
human input. Except to refill the water pump
system.

The ability to manage multiple plant
environments off one system. Due to hardware,
budget and time constrains this is potentially a
feature I will not be able to implement.

An easy-to-use graphical user interface must be
developed for the system that makes it easy for
the user to alter environmental variables and the
run schedule without any programming
knowledge.

A reporting system that shows graphical
representations of the data that is being
generated from the sensors in the environment.

Alerts sent via email or notifications to the users’
phone to let them know if their attention is

Different default programs that can be used for
less experienced users to help them begin to

OCR Programming Project Candidate Number:

8

required due to a fault or issue. The alerts could
also provide scheduled updates to the user
presenting data from the system.

grow different plants. Whilst these default
settings won’t be perfect, they should serve as a
good starting point.

The system needs to have a scheduling feature to
allow for all the environmental controls to be ran
on a regular interval. This would mean the user
could choose to water the plants every hour or at
any other given interval.

Encryption and password protection systems to
restrict unauthorized access to the greenhouse.
This will be key if I am to implement remote
access as this opens the system up.

Sensors will be used to allow the program to
react to changes in the greenhouse due to
external factors such as aircon systems in the
room and external sun light.

Save current settings to make it easier to
reconfigure if the system is down for any reason.

All data collected from sensors should be
permanently stored. This allows for scientific
analysis to be made of the system and its
impacts. This data could potentially be stored on
an external server to limit data loss in the event
of a failure.

Help notes in the GUI will assist new users in
getting the system working and let them know
what all the different features do.

A login system will be used to ensure only
authorized users can access the controls. I will be
using a secure hashing algorithm to make sure
passwords are stored safely.

Limitations
I believe that in the given time for this project I will be able to implement all my required features and
have them working to a satisfactory level. Due to budget constraints, it might not be possible to address
some of the desirable features such as the ability to control multiple environments. It is possible that I
will be able to implement this feature in the system without having any capacity to test for this function.

The accuracy of my sensors will also be a liming factor as I will be restricted by their accuracy when
recording measurements. This could lead to situations where my system is unaware of slight changes in
the environment if they are not detected by the sensors and as such there is no way to respond. This
limitation is also true for my output devices as I will only be able to affect the environment within the
ranges of my heater and cooling systems. On extremely warm or cold days it could be possible that the
automated systems are not able to bring the various variables back to their accepted ranges.

It will not be feasible to produce a fully secure system with all data fully encrypted. Whilst every effort
will be made to securely store and authenticate user login details most likely via a hashing algorithm.
There will still be large amounts of data that will not be encrypted such as the data generated from the
sensors and any information sent via the remote access feature will also be hard to ensure security.
Encrypting the sensor data would make it harder for me to manipulate the data and a whole new layer
of complexity. For this reason, I will aim to produce a secure login system where user passwords are
stored in a secure manner without worrying about securing any other data.

My system will be developed to run on a Raspberry Pi using Python as the main programming language.
This will place limitations on which platforms the application can be released on. For example, I will be
making use of the Raspberry Pi pins to attach my sensors and other devices. The notification system will

OCR Programming Project Candidate Number:

9

also only work with one system either notifying the user via Email or via an app notification API. To
reduce time spent setting up the system I will be using sensors with prebuilt libraries to deal with taking
readings and brining this data into python. This will make my system dependent on these libraries as I
will optimize my code to make best use of my specific sensors functions along with inevitable hard
coding of the prebuilt libraries into my own application.

Software and Hardware requirements
Software/Hardware Why they are needed
Linux/Raspbian The program will be developed for a Raspberry

Pi. To interact with the sensors, I will use
raspberry pi specific libraries for those sensors.
Using a different OS could mean some of the
sensors will not work.

Python 3 The program will be programmed in Python 3
which is not compatible with other python
versions.

Mouse A mouse will be used to navigate the GUI and
when using the remote access features.

Raspberry Pi A Raspberry Pi will be used to run the program
and host the remote access features. I will be
using a Pi due to its small design and affordability
along with its GPIO pins.

Database Some form of MySQL / MySQL light database will
be needed to store all the sensor data in an
efficient and accessible manor. This is more
desirable than storing data inside a text file as
databases are inherently easier to manipulate
and analyze.

Webserver To facilitate the remote access feature an Apache
webserver is needed so that the user can interact
with a website interface that then communicates
with the raspberry pi to control the greenhouse.

Heating element This is the element that will be used to control
the temperature of the greenhouse. Depending
on the strength of the sensor multiple may be
needed.

Computer Fan An old computer fan will be used to cool the
greenhouse and ensure fresh air enters the
greenhouse. This will be attached to the Pi via a
relay to allow for variable control of the fan.

LED light strips LED strips are an efficient and cost-effective way
to change the light intensity of the greenhouse
environment. The strips will allow for a long line
of LEDs to be ran around the greenhouse that are
all controlled from one relay.

Water pump Watering the plants will require a pump to spray
water across the plants. The pump will need to

OCR Programming Project Candidate Number:

10

be high powered so that a good covering of water
is achieved over the plans. A ready-made
watering pump will be used to save time
developing my own.

Soil Moisture sensor This is the sensor that will indicate when
watering is required. These sensors are very easy
to get hold of and are placed into the soil giving
back readings to the Pi about soil moisture.

Enviro for Raspberry Pi This all-in-one board for the raspberry pi can
monitor multiple variables inside the
environment. The board can measure
temperature, pressure, humidity, light and gas.
This will save the need for connecting many
sensors to my breadboard and make it easier to
get readings as the pre-built library will be used
to interact with the enviro.

Servo motor To control the window in the greenhouse a servo
will be mounted at the side of the window.
Activating the servo will open the window and
vias versa.

Success Criteria
Usability

• The interface should be designed to minimize the number of clicks to reach any feature
• The interface should be easy to navigate for both new and experienced users
• Must be intuitive for new users without compromising the more in-depth features used by

experienced users
• Help buttons placed near key features that describe how to use the related functions
• A home button that is easily accessible to take the users to the main page
• A modular design to keep related areas together

The suitability of the interface is subjective so I will have to ask my stakeholders to review the interface
and measure my success based on their response.

Functionality

• Users will find the system easy to control and intuitive to use
• The system should be robust and can run indefinitely with minimal input
• Users can enable notifications to their emails / phones updating them on progress
• There will be a login system to prevent unauthorized access
• Preferences / settings should be saved
• The system will perform regular tests on the sensors and output devices to ensure all are

working
• Any data generated should be saved to the database with backups made
• The remote access feature should be easy to interact with

Security
• Sensitive user data such as passwords will be stored in a secure hashed and salted format

OCR Programming Project Candidate Number:

11

Robustness
• The system should have the ability to still work when certain sensors or output devices are

down or not connected
• All data should be periodically backed up to prevent the risk of data loss in the event of a failure
• Timeouts should be built into the system so that the program is not constantly stuck attempting

to access a sensor and ending up in a loop
• Settings should be saved so that the system can be easily restarted without major setup works

Performance
• When generating reports from the data the program should be optimized to generate them in

the shortest time possible
• All methods will be reviewed to look for ways to optimize the code
• Areas such as how often a reading is taken and how often that reading is recorded will be

reviewed to find the best balance for performance and effectiveness in terms of the plant
growth

• When using the remote access feature not all data should be loaded unless it is specifically
requested by the user. This will reduce wasted data transfer and stress on the webserver

OCR Programming Project Candidate Number:

12

Design
Decomposition diagram

OCR Programming Project Candidate Number:

13

Usability features

OCR Programming Project Candidate Number:

14

OCR Programming Project Candidate Number:

15

OCR Programming Project Candidate Number:

16

Class Diagram

OCR Programming Project Candidate Number:

17

Testing Strategy
Iterative testing will be carried out during the development of my program. As I program new modules, I
will test each one to ensure that it functions as expected. This technique will ensure that all code works
as expected and reduce the workload when I come to post-development testing. Whilst each module
may work as expected individually this does not mean they will function differently when asked to
interact with the wider program. At the end of the development of each class I will perform a complete
unit test. This form of white box testing will help me to understand my own code and how data is
manipulated inside the class. Any issues or inefficiencies presented will be identified and fixed. During
this unit test I will pay particular attention to internal structure, design, and implementation of the class.

Once an error is identified in the program development will be paused whilst a fix can be implemented.
This makes sure errors are not compounded by further development that buries the error inside the
code making it harder to change without major programmatic changes. Using IDE debugging and testing
features I will be able to track the values of variables to ensure no logic errors exist.

Once the program has been developed and tested iteratively, I will perform a full post development test
this stage of testing will focus on ensuring the various modules interact with each other in an efficient
and expected manor. A comprehensive and challenging testing plan will be developed that will cover
every function of the program. Testing each function of the program will make sure all areas of the
program function as expected. Any failures in the testing plan will be identified and a solution
implemented. This stage of the testing will be carried out using a Black Box testing method where the
tester will have no knowledge of the internal structure, design, implementation, and flow of data in the
program. This makes sure no bias is introduced by a developer who knows how the program should be
operated.

Destructive testing will also be carried out to assess the robustness of the program. Screen capture
technology will be used to assess how an end user and the program interact with each other. This will
provide insights into how the software is behaving compared to the intended function by the developer.
Areas that will particularly be looked at will be time taken for the software to complete certain tasks and
ease of use. Screen capture will highlight moments of improper software usage highlighting any changes
to the UI that can be made to improve usability and robustness.

Further testing will be carried out to see how the software performs when improper data is inputted to
the system. The testing plan will include maximum and minimum value tests to see if the software is
able to handle them correctly. Data validation will also be a key focus of testing as the use of a database
will introduce the threat of an injection attack that could potentially corrupt the database. Another area
to be tested will be proper data output. Comparing the expected output to the produced output.
Thorough robustness tests will ensure the software will function well in the real world when end users
use the software in ways not envisaged by the developer.

Development & Iterative Testing
Iterative Stage 1 – Relay
Requirement: This class must be able to control the 4 relays connected to the hat in the form of the
Relay Hat. The class should be able to handle all combinations of relay states and allow for execution of
other code whilst a relay is active.

OCR Programming Project Candidate Number:

18

Hardware: A 4 relay board is connected to the Raspberry Pi directly. This relay board features an LED for
each of the relays which is on when the relay is active. This LED will be used for easy testing to
determine if the relay is active or not. The relay communicates with the Pi using I2C and requires 3v3
power and 5v power. Figure 1 is a diagram of the GPIO pins that are used by the relay on the Pi. This
board is useful as it still allows all the other GPIO pins to be accessed on the Pi. Each relay has a common
connection in the middle and then a NC (normal close) connection and a NO (normal open) connection.
To this project, we want a component to operate when the relay is active so we will be using only the
common and the NC connection. It is intended that the relay will be connected to the Pump, Heating
elements and the fan. The components will be connected as shown in figure 2. Another component the
Enviro+ also communicates over the I2C pins using the same protocol. Providing the Relay and the
Enviro+ are wired in series this will not be an issue as each device is given a 7bit address allowing up to
128 slave devices.

Figure 1

Relay

OCR Programming Project Candidate Number:

19

Figure 2

Configuring I2C
By default, the I2C protocol is not activated on the Raspberry Pi so I had to activate it using the steps
found on the relay wiki page.

Class Diagram

The relayState() function will be used to return the current state of an individual relay (on/off) this will
be key when developing the greenhouse system as it can be used to prevent potential issues such as
trying to turn on an already active relay.

Relay
1

Relay
2

Relay
3

Relay
4

Motor Heating
elements

Fan

<<Relay>>

-DEVICE_BUS: int
-DEVICE_ADDR: string

-bus
-state: dict

+on()
+off()

+relayState()

OCR Programming Project Candidate Number:

20

Pseudocode

Data Structure Data Type Scope Purpose Validation required
DEVICE_BUS Int Local The smbus class

needs to know
which bus is being
used. The bus
number is stored
in this variable
and later passed
as a parameter

DEVICE_ADDR String Local The smbus class
needs to know
the I2C address
being used for the
relay. The address
is stored here and
passed as a
parameter.

Bus Object Local An instance of the
smbus class

State Dictionary Local The state
dictionary is used
to store the
current state of
each relay
(on/off)

Position Int Local A parameter used
to signify the

Range check
1 <= x <= 4

class Relay

 public procedure new()
 setup bus
 state = {1:False, 2:False, 3:False, 4:False}

 public procedure on(position)
 Turn relay on
 state[position] = True

 public procedure off(position)
 Turn relay off
 state[position] = False

 public procedure relayState()
 return state[position]

endclass

OCR Programming Project Candidate Number:

21

desired relay to
be communicated
with. There are
only 4 relays
which are labeled
1,2,3,4. A range
check must be
carried out to
make sure the
value is not for a
relay that does
not exist.

Development Log
The relay class is a small class that will form the backbone of a large part of the project activating and
deactivating devices such as the pump. The class features one argument that must be validated to
ensure that the class does not attempt to communicate with a relay that does not exist.

To begin with I set out the module that will be needed in this class. The smbus module is used to
communicate with devices over the I2C pins.

Next, I defined the Relay class and added a small docstring to briefly explain the function of this class.

The first three lines of this constructor concern the setup of the smbus object. DEVICE_ADDR refers to
the address of the relay board and ensures the correct device receives the data this address can be
changed on the relay board using a two-bit switch system. To this project the address will be set too
0x11. DEVICE_BUS signifies which bus is being used to communicate with the I2C devices. Finally, bus is
used to create an instance of the smbus class with the correct DEVICE_BUS. The state dictionary is used
to store the current state of each of the 4 relays. There is no way to check the current state of a relay on
the board. So, it is assumed this class is initialized when all the relays are off. This is denoted by setting
all keys in the dictionary to have a value of False.

OCR Programming Project Candidate Number:

22

The on procedure takes one parameter position. This relates to the number of the relay on the board.
Each relay is numbered on the board beginning at 1 not 0 going up to 4. For example, a position of 3
would mean the class is changing the state of the 3rd relay on the board. When messing around with the
relay I discovered that the relay is cyclical meaning that if you try to activate relay 5 a relay which does
not exist this will turn on relay 3. This will cause unneeded issues if we do not validate the position to
ensure we don’t ever attempt to make use of the cyclical nature of the relay addressing. This parameter
is validated to ensure it relates to one of the existing relays. To do this I have used an inequality.
Providing the validation is passed a byte is written to instruct the desired relay to be activated. The
write_data_byte procedure takes 3 arguments. The first two arguments DEVICE_ADDR and position
have previously been explained. The third argument 0xFF is the register used by the board to indicate
turning a relay on. After this we change the state of the relay in the state dictionary.

The off procedure is identical to the on procedure apart from the 3rd argument on line 28 which is 0x00
to signify turning off the relay.

The intended use of this function is to check the state of a relay before it is interacted with. For example,
there is no point attempting to turn on a relay that is already activated. A basic return statement is used
to return true of false for the requested relay position.

Testing

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Attempt to
activate each of
the relays
individually.

The relay should
turn on this will
be shown by the
blue light on the
board turning on.

Each relay
activated as
expected

Pass

OCR Programming Project Candidate Number:

23

2 Attempt to
deactivate each of
the relays
individually.

The light on the
corresponding
relay should go
out to signify the
relay is off.

Each relay turned
off as expected

Pass

3 Have multiple
relays active at
the same time.

The relays should
turn on and not
be affected by
activating a
different relay.

The relays stayed
on and behaved
as expected.

Pass

4 Try to activate a
relay position that
does not exist
such as 5.

The program
should not throw
an error and no
relay should be
activated.

The program
continued to
function, and no
relay was
activated.

Pass

5 Get the status of a
relay.

True should be
returned if the
relay is active and
false if the relay is
off.

If the relay was
active, then true
was returned and
the opposite for
an inactive relay.

Pass

6 Get the status of a
relay that is out of
range.

The program
should produce
an error.

The program
produced a key
error.

Pass (See notes
below)

Whilst all tests were passed, I have decided to modify the code so that when a relay position that is out
of range is requested an index error occurs. This will lead to stronger code that is more robust and easier
to debug. To do this I will need to modify the On, Off and Relay State class.

For the on and off class I just had to expand my if statement to have an else for when a position out of
range has been entered. In this scenario an exception is raised with a helpful message to help with
debugging purposes.

OCR Programming Project Candidate Number:

24

The process was largely the same for the relayState function however I also added an inequality
condition to ensure the exception would be raised by my code and not when attempting to access an
index out of range in the state list.

Below is the updated testing plan to reflect the changes made to the code. The only two tests that
needed to be amended was test number 4 and 6. Instead of before where the program was expected to
continue as usual if a relay out of range was entered the program should now raise the exception.

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

4 Try to activate a
relay position that
does not exist
such as 5.

The program
should throw an
error and no relay
should be
activated.

The program
produced an
error, and no
relay was
activated

Pass

6 Get the status of a
relay that is out of
range.

The program
should produce
an index error.

The program
produced a key
error.

Pass

Figure 3 shows the error that is produced when a relay position out of range is entered as a parameter.

Figure 3

Bugs encountered during testing
When the code was run for the first time there were a few errors where I had forgotten to add self
before variables related to that object. This was quickly fixed by amending the code.

OCR Programming Project Candidate Number:

25

Review
In this first iteration I have developed a robust Relay class to handle the function of the relay board that
will be used in my project. The inclusion of raising errors will help with debugging later in development.
This class will allow me to begin to develop children classes that can control different hardware devices
such as the fan.

Source https://wiki.52pi.com/index.php/DockerPi_4_Channel_Relay_SKU:_EP-0099

Iterative Stage 2 – Servo
Requirement: In this iterative stage I will be developing the servo class. The servo motor will be used to
open and close the window in the green house. The servo needs to be moved across an angle of 45
degrees from a vertical to a horizontal position to open and close the window. In initial testing the servo
motor would jitter a solution to this will need to be produced.

Hardware: The Tower Pro SG51R servo being used for this project has three wires. A positive (red) wire,
a neutral (black) wire and a data wire. As the servo does not require much power, I will be using the
Raspberry Pis own 5v power pin and ground to power the servo. Figure 4 shows the GPIO pins that will
be used by the servo. Whilst figure 5 shows the currently used GPIO pins including the previous iterative
stages.

Figure 4

• Pin 4 – Servo Red

Servo

OCR Programming Project Candidate Number:

26

• Pin 14 – Servo Black
• Pin 11 – Servo Data
•

Figure 5

Class Diagram

Open() will set the servo to an angle of 45 degrees and Close() will lower the angle of the servo to 0
degrees from the horizontal. The two diagrams below show the position of the servo for each method.
The getPosition() function that will return the current position of the servo.

Window

-position: bool

+open()

+close()
+getPosition()

Relay

Servo

OCR Programming Project Candidate Number:

27

Data Structure Data Type Scope Purpose Validation required
Position Int Local Store the current

position of the
servo. This will be
returned in the
getPosition
function

Development Log
When I was learning how to use the servo, I was initially using the gpiozero module to control the servo.
This all worked nicely but there was an issue, once the code had executed the servo would jitter in the
position it had been set too. After some research I was able to work out this was because the Raspberry
Pi is a fully-fledged computer rather than a microcontroller. Meaning it lacked the ability to maintain a
smooth data signal whilst performing other tasks. The solution is to use a ported low-level library called
pigpio. This library allows the Pi to produce a smooth data signal and eliminates the jitter. The
disadvantages are that it controls the servo based on a pulse width rather than a straight up angle. This
will require some code to translate between the desired angle and the pulsewidth. Another issue is that
before this library can be used a pigpio daemon must be started. To do this I have added the following
line to the raspberry pis crontab file. This means that the daemon is executed on start up and ready for
use in python.

There is just one library that is needed for the servo class which is pigpio. This allows the Pi to
communicate with the servo motor without any jitter.

Closed Open

OCR Programming Project Candidate Number:

28

When initializing the servo class an instance of pigpio needs to be created. In my code I have assigned
this to the name servo. Next the position of the servo is recorded as closed this variable is used to
record the current position of the window and is returned during the getPosition function. Finally, the
servo pulsewidth is set to 2300 on GPIO pin 17. This is a precautionary step to ensure that the window is
always closed when the class is initialized. There is a scenario where the code could crash leaving the
window stuck open so this just accounts for that eventuality when the system is restarted.

The openPosition procedure is responsible for opening the window. Originally it was too be called open,
but this is already a function in python, so I thought it best to change the name and avoid any naming
related bugs. The set_servo_pulsewidth command takes two parameters the first is the pin that the
pulse will be broadcast on in this case pin 17. The second parameter is the width of the pulse from
experimentation 1450 is the pulse that moves the servo to a horizontal open position. Finally, the
position is recorded to be open.

The closedPosition procedure is identical to the openPosition procedure with the only difference being
that the width is 2300 which corresponds to a vertical closed position on the servo and the position
recorded as being closed. In this class a position of True corresponds to the window being open and
False meaning closed.

The getPosition function is very simple and just returns the position variable which relates to the current
position of the window.
Testing

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Open the window Window moves to
open position

The window
opened as
expected

Pass

2 Close the window Window moves to
the closed
position

The window
closed as
expected

Pass

OCR Programming Project Candidate Number:

29

3 When the window
is open run the
getPosition
function

True will be
returned to
indicate that the
window is open

True was returned Pass

4 When the window
is shut run the
getPosition
function

False will be
returned to
indicate a closed
window

False was
returned

Pass

5 Open the window
and then open it
again

The window
should not move
and just stay open

The window did
not move

Pass

6 Close the window
and then close it
again

The window
should stay shut

The window
stayed shut

Pass

Full Code

Review
The servo class is now complete and can be used to control the window of the greenhouse.

OCR Programming Project Candidate Number:

30

Note – Later in development I have realized that the GPIO 4 pin is used by the enviro. This has required
me to swap the Servo Data line to GPIO pin 17. I have updated the text to reflect this, but the code
screenshots don’t show this change.

Source - http://abyz.me.uk/rpi/pigpio/

Iterative stage 3 – LED strip
Requirements
The greenhouse features a strip of 60 leds attached to the roof. These can be controlled individually and
given unique rbg values. The job of the leds is to provide the plans with light energy for photosynthesis.
The user will later be able to select the exact type of light the plans receive such as white light or only
blue light. This class will need to have the ability to turn all the led strip one colour, turn off the led strip
and at the request of one of my stake holders I will produce two entertainment modes where a rainbow
is shown and another where a disco light randomly changes the light every so often.

Hardware
The led strips require 5v power with a decent current to operate properly. In my project I am using a 5v
2A power supply to power the LEDS. The leds can function incorrectly if they do not share a common
ground wire with the Raspberry Pi and the power supply. This means the pi is directly wired to the
power supply so I will be using a diode to isolate the Pi from the power supply and protect the gpio pins.
The makers of the LEDS Adafruit recommend that the data wire is a 5v signal but in my testing, I’ve not
had any issues using the Pis 3.3v gpios without any logic level shifting. Below if the wiring diagram for
the leds and the raspberry pi. The only difference being that I will be using GPIO 12 not 18 for the LED
data due to other pin requirements in my project. Below is also the gpio pins now in use in my project.

Figure 6

OCR Programming Project Candidate Number:

31

Figure 7

• Ground 39 – Led black
• GPIO 12 – Led data blue

Relay

Servo

LEDs

OCR Programming Project Candidate Number:

32

Class Diagram

• On() – fills the led strip with a given colour
• Off() – turns the led strip off (effectively the same as on but with rgb values 0,0,0)
• Rainbow() – Produces the rainbow effect on the leds
• StartRainbow() – Begins a rainbow thread to allow for concurrent processing
• StopRainbow() – Stop the rainbow thread using a start/stop flag
• RandomFlash() – Randomly changes the leds to a colour of the rainbow at set intervals
• StartRandomFlash() – Begins the random flash thread
• StopRandomFlash – Closes the random flash thread using a flag

Data Structure Data Type Scope Purpose Validation required
rainbowColours Array Local To store the rgb

color values of the
rainbow

Software considerations
Filling the led strip with one color is straight forward using the fill function in the neopixels library. This
will set the strip to a desired color and the strip will stay that way until told otherwise. However, when
producing more complex patterns of LEDs such as the rainbow snake the leds need to be constantly
updated. This means whilst running the snake or the flash procedures no other computation can be
carried out in python. So, it won’t be possible to run the leds in this way and continue the other
functions of the greenhouse. To overcome this issue, I will be using threading to allow me to run
concurrent python processes. The neopixel also requires that it is launched with sudo privileges meaning
the greenhouse will need to be launched from command line. Below is the error produced when not ran
from command line using “sudo python3 led.py”.

led

-pixels:
-rainbowColours: array

+on()
+off()

-rainbow()
+startRainbow()
+stopRainbow()
-randomFlash()

+startRandomFlash
+stopRandomFlash

OCR Programming Project Candidate Number:

33

Development log

This class requires a couple of libraries to be imported each performing a different task

• Board – Allows the neopixel library to talk to the GPIO pins
• Neopixel – A library that allows python to control led strips
• Time – Used to change the speed of the leds changing in the rainbow and flash procedures
• Random – Used to select a random item from the rainbow colors array
• Threading – Provides the ability to do concurrent processing in python via threads

Inside the class constructor I have set up the neopixel strip to have 60 leds and to communicate over
GPIO pin 12. For some reason the neopixel library only works on 4 select pins so my choice of pins was
dictated by this and the requirements of the enviro hat. I have also declared a rainbowColours array
which contains the 7 main colors of the rainbow in RBG form in order. I will use this later to loop over or
make a random selection from.

Turning the led strip on in one color is straight forward and just requires the use of the fill procedure
and a rgb value to be passed. This procedure does not require any threading as once the leds are filled
they will maintain this color until another command is sent or power on the strip is lost. Meaning I can
continue to execute my python code normally without having to go back and continually update the led
strip.

OCR Programming Project Candidate Number:

34

The off procedure works by filling the pixel strip with a rgb value of (0, 0 , 0) this achieves the aim of
turning off the leds. I considered just calling the on procedure inside the off procedure and passing the
parameter (0, 0, 0) to achieve the same effect but decided against it as this made code less readable and
more memory intensive.

The rainbow procedure produces a snake of 7 unique colours from the rainbowColours array that begins
at the start of the led strip and progresses down the strip shifting forward 1 led at a time until it reaches
the end of the stip. At this point the process is reversed, and the snake is moved back to the start. The
while loop on line 42 means the snake will continue until the stopRainbow procedure changes the flag
too true. Although there are 60 leds in the strip the algorithm only needs to loop over 53 of them as I
work ahead of, I too set the rest of the snake. If the loop went all the way too 60 then an index error
would occur when trying to set the i+1 led too its rgb value. The parameter speed is used to speed up or
slow down the progression of the snake along the strip.

As the snake progresses along the strip the led trailing the snake needs to be set back to off otherwise a
trail of red is left behind the snake as this is the color at the start of the snake. So, in the forward
direction case when the snake has moved at least 1 led the led trailing the snake is set too off. Without
the if statement the snake would begin with i = 0 and then attempt to set led position -1 to off and
cause an index error.

OCR Programming Project Candidate Number:

35

Now the leds of the snake are set. The current i value is the start of the snake and is set to the first value
of the rainbowColour array. Then the rest of the leds ahead of the snake start are set moving +1 each
time ahead in the pixels index and the rainbowColours array. After this code has been run the snake is
shown on the led strip.

Line 60 puts a delay into the rainbow snake loop. This has the visual effect of slowing the snakes speed
moving along the strip as the next iteration of the loop which moves the snake onwards 1 position won’t
happen until after this delay. At the end of the first loop of range(54) the snake will have reached the
end of the led stip. With the start of the snake sitting 7 pixels back from the end of the strip and the final
pixel of the strip being the final colour from the rainbowColours array.

The process is now reversed to move the rainbow snake back to the start of the led strip. Only two
things need to be changed to the first loop to do this. Firstly, the parameters of range and changed to
loop from 53 down too 0. This means the start of the snake moves towards the start of the strip with
each iteration. The other change is that the condition in the if statement changes to make sure the
snake is not at the end of the strip and attempts to set led index 61 too off. The rainbow snake is now
complete and running this procedure on its own will cause the snake too continually move from the
start to the end and back again. When developing this procedure, I thought about different approaches
to this problem. At its core the problem is how to move a fixed sequence of 7 values down an array of 60
items and back again. Possible solutions were to implement a circular queue type algorithm to do this
however this would only work if I was happy to accept the 7 values also rotating each iteration as the
front led color would be popped from the queue and then pushed to the end of the queue. Meaning the
colors do a loop of their own constantly changing order. Another idea I had was using list
comprehension too produce an array of 60 rgb values with the following structure.

OCR Programming Project Candidate Number:

36

And then looping through it setting each led value in the strip too the corresponding rgb value from the
generated array. It was a close call between using this method and the method I implemented but, in
the end, I elected to not go with this method as it would require a lot of iteration when mapping the rgb
array too the led strip. As already alluded to the issue is that python will always be inside this loop and
never can complete any other functions such as check the temperature or water the plant. So, the
options are solving this issue and find a way to do concurrent processing in python or have it so the
greenhouse can only light the plans when not doing anything else.

The threading module provides the solution to the concurrent processing problem. This module allows
you to create threads from inside one python script. A thread runs separately from the main python
script and can run at the same time as the main program doing its own computation and moving further
down the code flow. A thread can be thought of as a split in a pipe where water can flow two ways at
the same time. The startRainbow procedure opens a thread which runs the rainbow procedure
indefinitely until the stop flag is flipped. The flag is set too false on line 88 just to be sure that it is set
correctly as there is a possibility that it is currently true if a previous rainbow was in operation and then
stopped. Then a thread is setup which targets the rainbow procedure this is the procedure that will be
ran concurrently when the thread is started, and the speed argument is also passed into the target
procedure as required by the rainbow procedure. Finally, the thread that was setup in the line prior is
started. From this point on the rainbow procedure is moving a snake of 7 rainbow colored leds up and
down the led strip whilst python is still able to do whatever it wants such as open the window.

There will eventually be a time when the rainbow snake needs to be stopped say when it is nighttime in
the greenhouse. Too do this I created the stopRainbow class. This class is nice and short and sets the
stop flag to equal True. On the next iteration of the rainbow snake the while loop condition won’t
evaluate as true, and the snake will end. There will also be an empty but open thread so join() is used to
bring the thread to an end. This is like joining the two pipes back up so the water flows in on pipe again.
During the write up of this code it has occurred to me that there is a situation where the snake is
stopped but it’s still going to be displayed on the leds in its current position as nowhere has the off
procedure been called to clear the strip. I will fix this issue in the testing phase.

OCR Programming Project Candidate Number:

37

The second of the two playful lighting modes is the randomFlash procedure. This procedure will change
the light of the led strip to a random rainbow color from the rainbowColours array at a set interval. The
intended effect of this is a disco room where the lights are constantly changing. The only parameter for
this procedure is the interval at which the light will change given as an integer. A while loop means the
lights change indefinitely until the flags changed. Each iteration the led strip is filled with a random rbg
value that has been chosen from the rainbowColours array using the random library. Just as in the
rainbow procedure a time delay is added to change the interval between iterations. As this procedure is
going to be threaded this time delay won’t slow down the function of the greenhouse only the function
of this procedure.

The startRandomFlash and stopRandomFlash procedures are the same as the rainbow start stop
functions. They open and close a thread passing any required arguments to the randomFlash procedure.
Testing

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Fill the led strip
with a rgb value

The strip gets
filled with that
rbg value

The strip was
filled with the
inputted rgb value

Pass

2 Turn off the led
strip

The led strip will
turn off

The strip turned
off

Pass

3 Start the rainbow
without threading

The snake will
move up and
down the leds
until a keyboard
interrupt

The snake moved
up and down the
leds

Pass

4 Start the rainbow
using the
threading
function and see
if other processes

The snake will
begin to move
forward and then
back whilst
python completes
some other code

The snake moved
and python
continued to
function

Pass

OCR Programming Project Candidate Number:

38

can be competed
in python

4 End the rainbow
thread

Rainbow stops
and the led strip
goes too off

Rainbow stopped
but the strip
didn’t go off it
was left with the
snake stood still

Fail

5 Start the
randomFlash
without threading

Leds will flash
until keyboard
interrupt

Leds flashes Pass

6 Start the
randomFlash
using the
threading
function

RandomFlash
should happen
and python can
continue to
process

Flashed and
python worked

Pass

7 End the
randomFlash
using the
threading
function

Flash will end and
the leds go off

Flash stopped but
stayed on in the
color of the final
flash

Fail

There were two failures in my tests which both related to the leds not going back too blank once the
procedure controlling them was stopped. To solve this, I’m just going to add self.off() to the end of the
rainbow and randomFlash procedures but outside of the loop. So, when the loop ends the offline is
executed. Below are the changes made which have fixed the two failures.

Review
In practice mainly the led strip will be set to one color too light the plants but there will be the option to
active one of the two fun modes. The rainbow and flash lighting modes were produced more as a demo
function too create interest in the project rather than to help optimize plant growth. They did provide a

OCR Programming Project Candidate Number:

39

nice challenge when programming as particularly the rainbow required some thinking, and the threading
was a new library too me.

Source - https://learn.adafruit.com/neopixels-on-raspberry-pi
Source - https://www.thegeekpub.com/15990/wiring-ws2812b-addressable-leds-to-the-raspbery-pi/

Iterative stage 4 – Moisture sensor
Requirements
This class needs to have a function that will return true if the plant needs watering and false when the
plant does not need watering. The moisture sensor has a potentiometer that needs to be set manually
which determines when the sensor detects moisture. This means the moisture threshold of the soil will
need to be set by the user as it’s not possible to do this in software.

Hardware
The moisture sensor consists of a sensor and a probe. The probe is wired to the sensor by two jumper
wires. It does not matter which way round the wires go onto the sensor. Three pins are attached from
the sensor too the Raspberry Pi. These are VCC which attaches onto pin 17 for 3v3 power, GND too pin
25 for ground and D0 attaches too GPIO 5 pin 29. Too adjust the threshold at which the sensor detects
moisture there is a blue potentiometer on the sensor that can be rotated to change the threshold. The
user will need to water some soil and then set the sensor to be off when the probe is placed inside the
soil too set up the threshold. Figure 8 shows the gpio pins in use by the moisture sensor and the other
components of my project so far. Whilst figure 9 shows the sensor and probe assembly.

Figure 8

Relay

Servo

LEDs

Moisture

OCR Programming Project Candidate Number:

40

• VCC – 3v3 power pin 17
• GND – GND pin 25
• D0 – GPIO 5 pin 29

Figure 9

Class Diagram

• DoesPlantNeedWater () will return true if the plan needs watering and will return false if the

plant does not need watering.

Moisture

+doesPlantNeedWater()

OCR Programming Project Candidate Number:

41

Flow Chart

Development Log

So that python can communicate with the GPIO pins the RPi.GPIO library is used. This is imported under
the identifier GPIO just to help make the code more readable.

The class constructor of moisture sets up the GPIO library so that it has the correct settings too work
with the signal from the moisture sensor. As this is a digital sensor when the sensor detects moisture the
output on GPIO 5 is LOW 0v and then when the sensor can’t detect moisture the sensor is HIGH 3.3v.
The GPIO mode is set to BCM and GPIO 5 is setup as an input pin to detect a high / low signal.

OCR Programming Project Candidate Number:

42

The doesPlantNeedWater function will return true when the plant needs watering and false when the
plant does not need watering. The plant will be deemed to need watering when the sensor does not
detect moisture this will be when the moisture drops below the manually set potentiometer threshold.
GPIO.input(5) will return True when the reading on GPIO 5 is a HIGH 3.3V reading. In this case we return
True to indicate that the plant needs water. In the case the sensor detects moisture the reading will be a
LOW 0V reading and we return False to indicate that the plant does not need watering at the time the
reading was taken.
Testing

Test Number Test Plan Expected Outcome Actual Outcome Pass/Fail
1 Place the probe

into a glass of
water

DoesPlantNeedWater
will return False

False was
returned

Pass

2 Leave the probe
out of water

DoesPlantNeedWater
will return True

True was
returned

Pass

Review
The moisture class nicely abstracts the job of determining if the plant needs water or not into a simple
True or False. This class will be used as part of a feedback loop later in my project too regularly check if
the plant needs watering and then act accordingly. It is not ideal that the user will have to manually set
the potentiometer however once set it should not need to be changed again. The way to avoid this
manual setting would be to use the analog signal from the sensor but this would require a
microprocessor, and this was extra complexity that I decided against.

Iterative stage 5 – Enviro Plus
Requirements
The enviro plus board pictured below is a compact sensor board that contains a range of sensors such as
temperature, light, gas, pressure and many more. A side from the moisture sensor setup in stage 4 this
board will be responsible for taking all sensor readings required by the greenhouse. Not all readings will
be utilized such as the gas sensor. The 4 sensor readings that the greenhouse will track will be
temperature, pressure, humidity, and light.

Hardware

OCR Programming Project Candidate Number:

43

The board used 16 pins and is by far the largest device in terms of pin requirements. All required pins
have been left free for use by the enviro apart from the backlight pin which the LED neopixles library
forced me to use. This isn’t too much of an issue as the screen on the enviro won’t be used so having no
backlight on it won’t make any difference. Below is the diagram of the pins now in use for my
greenhouse. Some of the pins are doubled up at this stage but this won’t affect the function of any
sensors as the pins are either doubled up on power pins or on the I2C pins with can deal with many
parallel devices. All pins are connected to the pi from the enviro via a female to male jumper pin. This is
the final diagram as all devices and sensors have been wired to the pi. The only thing left is to add power
too some of the relay devices such as the motor and the fan, but this will be dealt with externally power
wise from the Pi in the following iterative stages.

Class Diagram

Enviro

+temperature()
+pressure()
+humidity()

+light()

Relay

Servo

LEDs

Moisture

Enviro

OCR Programming Project Candidate Number:

44

• Temperature() – return the current temperature in the greenhouse (units C)
• Pressure() – return the current pressure in the greenhouse (units hPa)
• Humidity() – return the current humidity inside the greenhouse (units %)
• Light() – return the current light level inside the greenhouse (unit lux)

Development log

Here I have imported all the libraries that are required to communicate with the sensors. The bme280
library is used for communicating with the temperature, pressure, and humidity sensor. The smbus
library allows the bme280 module too communicate over I2C protocol. The ltr559 library is used for the
light sensor on the board.

Inside the class constructor the bus for the I2C protocol is setup and then passed as a parameter when
initializing an instance of the BME280 class.

The temperature function uses bme280.get_temperature to get the current reading from the enviro
board. This value by default extends to many decimal places so to sanitize the data have chosen too
round this value to 2 decimal places. This rounded value in float data type is then returned by the
function.

OCR Programming Project Candidate Number:

45

The pressure and humidity functions follow the same format but using the correct sensor. Once again
rounding to 2 decimal places and returning the value in float format.

Finally, the light function makes use of the ltr559 library to obtain the luminosity from the light sensor.
This value is rounded and retuned.
Testing

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Get the
temperature

A sensible value
for temperature
will be returned in
float form
rounded to 2
decimal places

22.04 was
returned this is in
float form and is
rounded and
seems like a
sensible value for
temperature

Pass

2 Get the pressure The pressure will
be returned in the
correct format
and data type

658.97 was
returned

Pass

3 Get the humidity The humidity will
be returned

76.71 was
returned

Pass

4 Get the light
intensity

A value for light
intensity will be
returned

10.19 was
retuned

Pass

5 Turn on the heat
lamp and record
temperature after
a few minutes

The temperature
should go up

The readings
started at 20 and
steadily climbed
for every new
reading whilst the
lamp was on

Pass

6 Turn on the leds
and record the
luminosity

The luminosity
should go up

A value of 0 was
returned

Fail

6 Turn on the leds

and record the
luminosity

The luminosity
should go up

A value of 0 was
returned

Fail

No error was being shown in the Python shell, but the light sensor appears to be returning a value of 0
no matter the light intensity. To begin with I shined a torch onto the enviro too see if this would change
the reading. This did not work so I decided to reboot the Raspberry Pi too see if this made a difference.
This also had no effect on the sensor reading it was still returning 0. At this point I decided to go back to
the examples provided by the maker of the board and their code was still working and returning the
light intensity. After playing around with my code and the example I noticed that the sensor seems to

OCR Programming Project Candidate Number:

46

always return 0 for its first reading. When placed in a loop constantly returning light readings the sensor
would begin to provide light intensity readings after providing its initial reading of 0. It appears the error
has something to do with calling the light intensity too quickly after initializing the ltr559 module. To fix
this issue I could have added a time delay into the light function to ensure the sensor was properly setup
before a reading was requested from it. However, I elected not to do this as when the greenhouse is
started there will always be ample time between the system starting and a light reading being taken as
the user will need to login which takes longer than the 0.1 second delay, I found was needed between
calling import ltr559 and doing ltr559.get_lux. This is an issue I will monitor as if it proves to be a
significant issue, I will have to implement the time delay fix. The reasoning for not introducing this delay
is that I did not like the idea of introducing time delays as this is never goo practice unless required.
Testing of test 6 produced a pass when I ensured the sensor was initialized before taking a reading.
Review
The enviro class is a key backend component that will be used during every cycle of the Greenhouse too
take sensor readings. All actions of the greenhouse will be based off these readings. At this point I have
created classes to control all hardware and sensors connected to the Raspberry Pi. All that is left to do
hardware wise it to wire up the fan and pump too the relay board which I will cover in the next stage.

Source - https://learn.pimoroni.com/tutorial/sandyj/getting-started-with-enviro-plus

Iterative stage 6 – Relay wiring + Component testing
Overview
This stage is purely hardware focused and won’t involve any programming unless bugs are identified. At
this stage the following components are connected to the Raspberry Pi, and I have written code to
control them the relay, the LED strip, the servo, the moisture sensor, and the enviro sensor board. This
leaves the Fan, the heat lamp and the pump that needs to be connected to the relay. These devices will
all need to be wired too an external power source and go via separate relays to allow me to control the
function of them. After this I will carry out an extensive test plan to check all hardware components are
working and specifically, they are working whilst other components are also in operation.

Relay
Since I began development of this project, I have bought a heating lamp that is designed for heating
chickens. This light is very powerful and can provide much more heat than the heating pads. For this
reason, I have decided to use the heating lamp instead of the heating pads as the primary source of heat
for the greenhouse. This means relay 2 will be left empty and relay 4 used for the heating lamp. The
main reason for this change is that the heating elements drew so much power from my external 5v
power supply that the other devices struggled to operate. The heating lamp comes with its own plug so
is not on the same circuit as all other components and as such avoids this issue.

Fan

Relay
1

Relay
2

Relay
3

Relay
4

Motor Fan Heating
Lamp

OCR Programming Project Candidate Number:

47

The fan has a red positive wire and a black negative wire. When power is placed over the fan it begins to
spin. To turn the fan on and off it will need to be wired across a relay. The fan will be connected too my
5v external power source via the main breadboard and then wired into the common middle port of relay
3 and then wired out from the NC port on the left which means the fan will turn on when the relay is
closed. Below is the wiring diagram for the fan.

Motor / Water Pump
The pump is also powered by a standard live and neutral wire setup. The pump is connected in the same
way as the fan as shown blow. The motor can run either direction so swapping the wires simply reverses
the direction of the pump.

Heat Lamp
The heat lamp is connected to the relay in the same fashion as the other two devices. The lamp is
powered by its own wall plug as it requires more power than the other devices.

Relay Review
All devices are now connected to the Pi and the greenhouse. Throughout the previous iterative stages I
have developed classes to communicate and control all these devices. A testing plan has been

OCR Programming Project Candidate Number:

48

developed and carried out for all these classes individually. I will now carry out a larger testing plan to
ensure that all devices work simultaneously.

Hardware testing plan
In this testing plan I will produce a python script to run various components simultaneously and check
that they work as expected when used in conjunction with other hardware devices and sensors.

Before commencing testing, plan Raspberry Pi will be rebooted, and all devices connected and powered
as the Greenhouse will be during use. During each test all other devices should continue to operate.

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Open the window The window
should open
without the
requirement for
“sudo pigpiod” to
be ran in terminal

2 Turn on the
heating lamp

The heating lamp
should come on

3 Take a reading of
temperature

A float value for
temperature
should be
returned rounded
to 2 decimal
places

4 Turn on the fan The fan will begin
to spin

5 Turn on the pump The pump will
begin to pump
water into the soil

6 At this stage all
relay devices are
turned on. Check
all devices are
functioning and
not struggling to
for power as they
share the same
power source.

The fan, pump
and lamp should
be performing
their respective
jobs to a suitable
standard

7 Fill the LED strip
using the
following rgb
values
(255,255,255).
The leds share the
same power
source as the

The LED strip will
be filled white. All
devices on the 5v
supply should be
working.

OCR Programming Project Candidate Number:

49

relay devices.
White is the most
power intensive
colour for the led
strip as each value
is at its max.
Check that all
devices on the 5v
power supply is
functioning

8 Turn off all the
relay devices.
(fan, lamp, pump)

All relay devices
should be turned
off

9 Begin the LED
Rainbow mode

The LED should
start to snake up
and down the
LEDs

10 Close the window The window will
shut, and the LED
will continue to
snake

11 Take a reading for
pressure

Pressure will be
returned as a float
rounded to 2
decimal places

12 Take a reading for
humidity

Humidity will be
retuned as a float
rounded to 2
decimal places

12 Take a reading of
light

Light will be
returned as a float
rounded to 2
decimal places

13 Check if the plan
needs watering

True or false will
be returned based
on if the soil is too
dry. Check this
value against the
light on the
moisture sensor

14 Turn off the LED
Rainbow

The rainbow will
stop, and the led
strip be off

15 Start the random
flash led mode

Leds will begin to
flash

OCR Programming Project Candidate Number:

50

16 Turn off the
random flash led
mode

Flashing will stop
and the led strip
turn off

Test Plan Script

Import all the classes I have developed.

Initialize instances of all the classes. I have slightly changed how the relay class works to make it easier
to use I will explain these changes later in this stage.

OCR Programming Project Candidate Number:

51

OCR Programming Project Candidate Number:

52

Throughout the test script I have used the line “input()” so that the code will wait for me to hit a key on
the keyboard before moving onto the next test. This allows me as much time as I need to observe the
greenhouse and check everything is working.

OCR Programming Project Candidate Number:

53

Test plan results
1 Open the window The window

should open
without the
requirement for
“sudo pigpiod” to
be ran in terminal

An error was
produced say that
the deamon was
not started

Fail

After testing the Servo class, I believed that I had fixed this issue however it appears to have reemerged
as an issue. I have already carried out all the instructions in the Pigpiod help documents to run the
deamon on startup, but this doesn’t appear to fix the issue. I wanted to avoid having to ask the user to
run the following command before starting the greenhouse, but it looks like that’s the only reliable
solution to get the servo working. Going forward before running the greenhouse the user will have to
enter the following into terminal.

I will add a prompt in the gui after login to ask the user if they have remembered to run this command.
Once this line is running the window opens as expected so the test has been passed.

1 Open the window The window
should open
without the
requirement for
“sudo pigpiod” to
be ran in terminal

After running the
right terminal
command, the
window opened

Pass

OCR Programming Project Candidate Number:

54

2 Turn on the
heating lamp

The heating lamp
should come on

The lamp turned
on

Pass

Window is
now open.

Heating
lamps now

on

OCR Programming Project Candidate Number:

55

3 Take a reading of

temperature
A float value for
temperature
should be
returned rounded
to 2 decimal
places

22.04 was
returned as the
temperature
reading. This is a
sensible reading
considering the
greenhouse is
kept inside at
room
temperature. The
format was float
form and rounded
to the correct
number of
decimal points

Pass

4 Turn on the fan The fan will begin
to spin

The fan started to
spin

Pass

5 Turn on the pump The pump will
begin to pump
water into the soil

The pump turned
on and started
pumping water
into the
greenhouse

Pass

Fan is now on

OCR Programming Project Candidate Number:

56

Wet patches
from the

pump

OCR Programming Project Candidate Number:

57

6 At this stage all
relay devices are
turned on. Check
all devices are
functioning and
not struggling to
for power as they
share the same
power source.

The fan, pump
and lamp should
be performing
their respective
jobs to a suitable
standard

The pump, lamp
and fan are
working at full
power and not
struggling to
perform their jobs

Pass

7 Fill the LED strip

using the
following rgb
values
(255,255,255).
The leds share the
same power
source as the
relay devices.
White is the most
power intensive
colour for the led
strip as each value
is at its max.
Check that all
devices on the 5v
power supply is
functioning

The LED strip will
be filled white. All
devices on the 5v
supply should be
working.

The led strip was
filled with the rgb
values
255,255,255

Pass

OCR Programming Project Candidate Number:

58

8 Turn off all the
relay devices.
(fan, lamp, pump)

All relay devices
should be turned
off

All the relay
devices (lamp,
pump, and fan)
turned off

Pass

9 Begin the LED
Rainbow mode

The LED should
start to snake up
and down the
LEDs

The LED snake
started but it did
not clear the led
strip before
starting

Fail

All relay
devices

turned off.

OCR Programming Project Candidate Number:

59

This is an issue only relevant on the first pass of the rainbow snake when the strip has previously been
filled. The fix for this is to clear the strip before beginning the rainbow thread. I have added the
following code to the start of the startRainbow and startRandomFlash methods this will ensure the strip
is off before starting the code.

I have also added the following code to the class constructor of the led class as I have noticed that on
bootup of the raspberry pi the first led is sometimes turned on. This will ensure the strip is clear when
the greenhouse is started. I would have used the same code as above, but the off method has not been
declared when the class constructor is running so i needed to use fill instead.

9 Begin the LED

Rainbow mode
The LED should
start to snake up
and down the
LEDs

After
implementing the
above fixes, the
led strip is now
clear when the
rainbow snake
begins

Pass

The LEDs that the
snake has not yet
reached are still

white.

OCR Programming Project Candidate Number:

60

10 Close the window The window will
shut, and the LED
will continue to
snake

The window shut
and the rainbow
snake continued
to function
meaning the
threading is
working as
expected

Pass

The strip is no longer
filled when the

rainbow snake starts.

Window is
now closed.

OCR Programming Project Candidate Number:

61

11 Take a reading for

pressure
Pressure will be
returned as a float
rounded to 2
decimal places

1032.25 was
returned this is
roughly pressure
at sea level so
seems sensible
and is correctly
rounded

Pass

12 Take a reading of

light
Light will be
returned as a float
rounded to 2
decimal places

A humidity
reading of 49.91
was returned in
correct format

Pass

13 Check if the plan

needs watering
True or false will
be returned based
on if the soil is too
dry. Check this
value against the
light on the
moisture sensor

False was
returned
indicating that the
plan does not
need watering. I
am confident the
pump system is
working well as I
could see on the
sensor before the
pump was turned
on that it would
need water but
after pumping
during testing
that has changed
too false

Pass

OCR Programming Project Candidate Number:

62

The lower green light on the sensor indicated if the sensor is detecting moisture or not. The light being
on means the probe is detecting moisture and that the plan does not need watering. I have mounted
the sensor at the lip of the electronics box door so that it is easily accessible if anyone wants to adjust its
potentiometer (moisture detection threshold).

14 Turn off the LED
Rainbow

The rainbow will
stop, and the led
strip be off

The LED rainbow
snake ended, and
the strip was fully
off

Pass

15 Start the random
flash led mode

Leds will begin to
flash

The LEDs started
to flash

Pass

The LED
strip is fully

off.

OCR Programming Project Candidate Number:

63

Here you can see the Led strip flashing different colors of the rainbow

16 Turn off the
random flash led
mode

Flashing will stop
and the led strip
turn off

The LED strip
stopped flashing
and turned off

Pass

Amendments to the Relay class
When writing the test script, I realized it would be easier to have a relay class where you pass a relay
position on initialization and then that was the relay that that instance would control. This would save
me passing the relay position each time I turned on or off a relay and would allow me to have three
instances of the relay class one for each of the devices connected to a relay.

OCR Programming Project Candidate Number:

64

Too implement this change I removed the position parameters from the on, off and relay state
procedures. I then added a position parameter too the class constructor that would be the relay
controlled by that instance of the class. I also swapped the state identifier from an array data type to a
boon to reflect the fact we are only dealing with a single relay, so it is either on or off. As we now only
must enter the relay position once I have removed the inequalities that check the position is valid as its
much less likely to make a mistake when we only need to enter the position when initializing the class.
Finally, I changed the arguments to the write_byte_data procedure to reflect the new location of the
position variable and changed the relayState function so that it returned the state bool not the state
array. I have circled the changed made below.

These changes make it much easier to account for swapping the relay that a device is connected too and
makes our code much more readable. On the left is the old code we would need to do to turn on and off
the pump and on the right is the new code to turn on and off the pump which I feel is much more
readable and robust.

Old New

Review
The hardware stage of this project is now complete. I have tested all components of the greenhouse and
they function as expected. Only a few minor issues have been encountered and solutions have been
implemented for them. It is regrettable that the user will have to run “sudo pigpiod” before running the

OCR Programming Project Candidate Number:

65

greenhouse however I have been unable to find a work around and can only assure updates to the
Raspberry Pi operating system have stopped the pigpiod daemon from starting on boot.

Iterative Stage 7 – Greenhouse build
Overview
This stage will provide a quick overview of the greenhouse build and the different parts and features of
the greenhouse

Greenhouse Body

The greenhouse has been constructed from a wooden frame mounted to a MDF base with clear acrylic
for the greenhouse section too allow people to observe the plants inside the greenhouse and for natural
light to enter. The wooden frame provides ideal mountings for all wires too be attached too.

5mm MDF
base

Clear acrylic

Wooden
frame

OCR Programming Project Candidate Number:

66

Electronics Box

Wooden
electronics

box

Finger hole
to open the

door.

Side hole allows
power and data

cables to be
routed out from
the greenhouse.

OCR Programming Project Candidate Number:

67

A wooden box half the height of the greenhouse attaches to the back of the greenhouse. This box
houses all the electronics such as the Raspberry Pi, Breadboard, moisture sensor and wiring. This helps
to protect the components of the Greenhouse from being moved about and accidentally unplugged or
damaged. The back side of the box that backs onto the greenhouse holds the enviro sensor board and
the pump.

Front side of
enviro sensor

board

Front side of
pump

Hole for wiring from the
greenhouse to be routed into

the electronics box.

The inside of the box gives
access to the rear side of the

pump and enviro board.

OCR Programming Project Candidate Number:

68

Greenhouse Door

A large door provides easy access into the greenhouse so that the soil tray can be moved in and out of
the greenhouse. This door is attached via two large hinges so that the door is sturdy and does not
wobble.

OCR Programming Project Candidate Number:

69

Window

The window is attached to an opening on the side of the greenhouse. The servo motor is mounted
behind the window so that when the servo is operated the window will open.

Heating Lamp

The heating lamp is placed directly above the plant tray so that maximum heating efficiency is achieved.
The cable is then routed into the electronics box where it is connected too its relay and then onto its
power supply.

Servo

Heating Lamp

OCR Programming Project Candidate Number:

70

LED Strip

The LED strip has been cut into 4 equal length pieces and then soldered together to allow me to mount
it in a snake shape along the top of the greenhouse. To attach the leds to the roof I have used double
sided tape.

Moisture Sensor / Probe

Sensor

Potentiometer

OCR Programming Project Candidate Number:

71

The Moisture probe is routed from the electronics box and into the greenhouse where it is placed into
the soil tray. I have mounted the sensor on the lip of the electronics box door so that it is easily
accessible when changing the potentiometer.

Pump

Probe

Front side of
pump

Wooden board isolates
the electronics from

water.

Water in from
reservoir

Water out to
soil

OCR Programming Project Candidate Number:

72

The pump is attached to the back of the electronics box which in turn faces the inside of the
greenhouse. The rear of the pump is easily accessible inside the electronics box and is wired into the
power source and the relay. The front of the pump is separated from all electronics by the wooden
board reducing any risk of water damaging components. A small hole drilled into the side of the
greenhouse acrylic allows for the pump pipe to exit the greenhouse and feed into the water reservoir.
The other pipe is buried in the soil with a few small holes cut into it so that water is evenly distributed
around the soil.

Water
reservoir

Water goes
into pump.

Rear side of
pump

OCR Programming Project Candidate Number:

73

Enviro Board

The enviro sensor board is mounted on the same face as the pump. The front of the board is exposed to
the inside of the greenhouse where the sensors can make accurate readings of the current environment
conditions. The rear side of the board is exposed to the inside of the electronics box where the required
pins are wired into the Raspberry Pi.

Fan

The fan is fixed in place above the electronic box and provides fresh air into the greenhouse.

Front of
enviro

Rear side of
enviro

OCR Programming Project Candidate Number:

74

Breadboard

The breadboard attaches to a 5v power supply and provides power in parallel to the fan, pump and then
LEDs. I have used the sticky tape on the bottom of the breadboard to stick it down to the MDF base. I
positioned the breadboard at the front of the electronics box so that it is easily accessible if anything
needs changing.

Review
The greenhouse is fully built and can be controlled manually by writing custom code using the classes I
have created. The next stages of my development will now focus on producing the gui and automation
features of the Greenhouse.

Iterative stage 8 – GUI
Overview
Stage 8 is going to focus on building the graphical user interface that the user will use to communicate
and interact with the greenhouse automation system. I will be using the python kivy language too
handle the GUI and, in this stage, will build the layout adding all components without developing their
function.

Requirements
The GUI must follow the design of the mockups that I have produced earlier in the project. For this stage
I will just be placing buttons, text boxes and other components onto the screen they should be in the
correct position but interacting with them won’t cause anything too happen. I will be adding
functionality to the GUI in future stages.

OCR Programming Project Candidate Number:

75

Development Log – Welcome screen
In this development log I will be setting up Kivy so that it is ready to be used in python for the GUI and
developing the welcome screen.

Before I can use Kivy it needs to be imported as a library into the greenhouse.py script. I have also
imported all the different classes that will be used to make it easier to access them. This saves me typing
out the full-length identifier when using a common class that the kivy library offers.

When the GUI is started, I want it to be automatically full screen. Kivy by default does not maximize the
window and so unless specifically set the window will be around ¼ the size of the screen. Here I have
imported the window class from the kivy library and then told the window too always be maximized.
This comes before any other code to ensure the window is going to be full screen right from the start.

The Kivy library allows you to style the screen in much the same way as CSS. Whilst you can enter kivy
objects directly from the python file this can before cluttered and makes it harder to manage many
screens. To overcome this kivy allows you to store your objects and screens inside a kv file. Here I am
loading the greenhouse.kv file that I am using to style the GUI so that kivy knows to use the contents of
this file when rendering the GUI.

OCR Programming Project Candidate Number:

76

When the user starts the application the first screen, they are met with is the welcome screen. The
screen is made up for 3 elements a photo, a title and a login button which takes the user to the login
page. Above is the mockup of this page that I made earlier in the project I will be basing the Kivy screen
off this design. As kivy produces a standard window is already has an exit button in the top right so I
won’t need to add one myself.

Inside the kv file I have defined a new screen called “WelcomeScreen” the kivy syntax to do this is to use
the < and > symbols. Each screen in kivy is also a class with the same name as the screen so I have
defined the “WelcomeScreen” class inside the python file. All screens will inherit from the screen class
which adds required methods from the kivy library. Later in development any functions for a specific
page such as the function controlling login validation will need to be added inside its class. However, for
the time being I have just added the keyword pass so this class is defined but with no methods.

For all the GUI screens I will be using Kivys float layout this allows me to position items on the screen
based on a percentage of the screen and size them based on a percentage of the screen. This means my
GUI will be responsive too changes in the size of the screen as an object that takes up 50% of the
window in the x axis will always take up the same percentage no matter how the user decides to
readjust the window width and height.

OCR Programming Project Candidate Number:

77

For each screen the background color will be light green. Too do this I have drawn a rectangle onto the
screen which has a color of green and a width and heigh equal to that of the window. Kivy uses rgba for
its colours with each value expressed as a fraction of 1 so too convert standard rgb into the kivy
standard each r, g and b value must be divided between 255. This snippet of code will be repeated at
the start of each screen in the kv file.

Kivy can render png files onto the screen with a transparent background. Too do this the image keyword
is used. Line 15 lets kivy know when the image too be rendered can be found in this case in the same
directory with the name “greenhouse_image.png”. Line 16 lets kivy know how big the image should be
the first value is what percentage of the x axis the image should take up and the second value what
percentage of the y axis. So, in this case I have defined that the image should be the width of 50% of the
screen and the height of 50% of the screen. This is useful as if the window is readjusted too be bigger or
the GUI is run on a different computer the image will still be in the same proportion as before when
compared to the screen as a percentage. In line 17 I have positioned the image too do this I have
specified that the x axis center position of the image should be 50% of the screen this is equivalent to
the middle of the screen and then I have specified that the image should be centered on the y axis 60%
up from the bottom of the screen. It should be noted that kivy takes all measurements from the bottom
left of the screen so too position the image kivy calculates the height and width then works out 50% of
the width and 60% of the height and positions the image in that location. This is constantly evaluated so
any changes too screen size automatically repositions the elements in the screen.

Note on calculating positions:
To help me position the elements of my gui I printed off the GUI renders on paper and measured the
height and width of the A4 page. This then allowed me to measure the distance in the x and y directions
from the bottom left of the page too the center of an object and then divide this value by the overall
width or height of the page. Thus, obtaining the percentage position value which I could then plug into
kivy. This made it much easier to work with the float layout in kivy and saved me a lot of time otherwise
spent moving elements around in kivy trying to make them sit in the correct position.

OCR Programming Project Candidate Number:

78

Below the image of the greenhouse there will be a title. To add text into a kivy screen the Label keyword
is used. Just like with an image it is given a position hint on line 22 to let kivy know where to place the
title. A kivy label has a text property that is set on line 21 to specify the text of the label. A font size is
also given to the label along with a color.

Finally for this screen a button is added which takes the user to the login page. The button by default
has a black background along with a slight opaque tint I have decided to override this by setting the
background_normal to remove the tint and the colour too be blue as per my GUI mockups. Kivy has got
a library which allows it to use straight up hex colour values and in this case, I have elected to use this
function too set the colour of the button on line 33. When the button is pressed the screen needs to be
moved to the login screen. This will happen regardless of any python side processing and so this
transition can be handled inside the kivy file by setting the screen manage current page too equal
“login” which will be the name of the login page. This happens when the button is pressed.

The welcome screen is now complete and when ran will look the same as my GUI render of this screen.
Before kivy can run the script a screen manager needs to be added inside the python file. The screen
manager is responsible for controlling which screen is displayed too the user. This handles transitions of
the screen when I want to complete some processing such as login validation inside python and based
on the results of that move the user to a specific screen. It also gives the different screens their name
which is then used too transition between pages such as in line 36 when I’ve swapped the screen to the
login screen. The first widget added to the screen manager will be the one that is shown to the user on
startup and so I have added the Welcome Screen first. I have given the screen a name of “welcome” and
this is the key word that will be used if I ever need to swap the screen being displayed too the welcome
screen.

OCR Programming Project Candidate Number:

79

Finally, the MainApp class is declared which inherits from App this is a Kivy class which produces a
standard window GUI. When the class is built it will return the screen manager thus allowing me to
control the current screen shown to the user. On line 54 the MainApp is ran which will launch the GUI to
the user.

OCR Programming Project Candidate Number:

80

Kivy

Mockup

Above is a screenshot of the welcome page as developed using kivy. I have also included a screen shot of
the GUI mockup made previously for comparison. The differences are minimal and mainly relate to the
different fonts used by kivy and when producing the mockup.

OCR Programming Project Candidate Number:

81

Complete welcome screen code

Test Plan – Welcome Screen
The only thing too test on this page is the login button which should move the screen onto the login
page. As this page has not yet been developed I have just quickly setup a blank screen so I can test if the
screen is indeed changed when the button is pressed.

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Click the login
button

The welcome
screen will
transition to the
login screen

The screen
swapped too the
login screen

Pass

OCR Programming Project Candidate Number:

82

Development Log – Login Screen
The login screen will need to have two text input boxes one for the username to be entered and one for
the password of the user to be entered. A login button will also be on the screen which when pressed
will eventually validate the user and act accordingly. However, this stage is only focusing on the kivy
layout, so I won’t be adding the login function yet.

Here is the mockup for the login screen that I have developed, and I will be using this too layout my kivy
screen.

Once again, I have declared the loginscreen class inside python and created a new screen inside the kivy
file that once again uses float layout. Inside the python loginscreen class there will eventually be a
function that will be ran when the user presses the login button. This function will then handle the
validation of the user and if successful use the screen manager to swap them to the main menu screen.

The screen is added as a widget of the screen manager.

OCR Programming Project Candidate Number:

83

Background is made green

A label is used to add the title to the top of the screen. As the title will have a dark blue background, I
have drawn a rectangle behind the label which will have a background colour equal to the rgba value on
line 58 in this case light blue and set the rectangles size and position equal to that of its parent. In this
case the parent’s size and position is set when I sized and positioned the label.

OCR Programming Project Candidate Number:

84

Two further labels one is added which sit next to the username and password input boxes too let the
user know where to input their login details. Both have their own background boxes which are added in
the same was as for the title but with a light blue background.

OCR Programming Project Candidate Number:

85

I have added two text input boxes onto the page which are used to capture the user’s login details. They
are both given an id of “username” and “password” respectively this is to allow me to access their value
inside of python by referencing their id. The multiline parameter is set as False for both boxes so that
the user can’t add more than one line of text. A hint text is added so the user sees an example of the
information to be entered too prompt them to enter their own details and avoid any confusion. For the
password text input box, I have set the password parameter to equal true. This means that any text
inputted into the box will be represented as a “*” so that the user’s password is hidden from view for
security reasons.

Finally, I have added the login button at the bottom of the page. In the case of this button when it is
pressed a function called “check_password” will be ran. This function will be a part of the LoginScreen
class and can perform the required actions of the user validation. The “root” means that kivy knows the
function belongs to the screens class inside the python file.

OCR Programming Project Candidate Number:

86

Kivy

Mockup
Above are screenshots of the kivy login screen and the gui mockup for comparison.

Complete login screen code

OCR Programming Project Candidate Number:

87

OCR Programming Project Candidate Number:

88

OCR Programming Project Candidate Number:

89

Test Plan – Login Screen

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Enter some text
into the username
text input box

The text will
appear in the text
box

The text appeared
in the text box

Pass

2 Try to enter a new
line in the
username text
input box

No new line
should be
entered, and the
text should stay
on one line

The text was
limited to one line

Pass

3 Enter some text
into the password
input box

The text should
be entered but
hidden by the “*”
character

The text was
entered and
hidden by the “*”
symbol

Pass

4 Try to enter a new
line in the

No new line
should be

The text was
limited to one line

Pass

OCR Programming Project Candidate Number:

90

password text
input box

entered, and the
text should stay
on one line

Development Log – Main Menu
The main menu screen is designed to give the user a quick overview of the greenhouse system showing
them the main measurements coming from the greenhouse and letting them make some quick
adjustments to the settings. The menu is split into 5 compartments each representing a different group
of related features or information. This is the first screen that will make use of a scroll view for the
system log and of dropdown menus.

This is the mockup of the main menu. I will be leaving the graph blank as I will need to implement this
later.

The main menu screen class will later have functions for all the buttons, dropdown menus and the scroll
view but for the time being is left empty. Inside the Kivy file I have also added a new screen with a
matching name. Whilst also adding the new main menu screen too the screen manager.

OCR Programming Project Candidate Number:

91

Here the background is set to the colour green.

OCR Programming Project Candidate Number:

92

All the pages after the user have logged in feature a menu along the top. This menu will allow the user
to navigate between the following the main menu, parameters, graphs, and settings screen. The current
page that the user is on will be displayed as dark blue whilst the other pages buttons will be light blue.
Once a button in the menu has been pressed the user will be taken to the related screen. The menu
code is repeated at the top of each page that includes the menu with the only alteration being the page
which is displayed as dark blue to represent the current page.

Behind the greenhouse measurements I have drawn a box too compartmentalize the information
regarding the greenhouse readings from the other collections on the main menu. I found that the
easiest way to draw this box was too just create a label with no text property and then set the size and
position as normal.

OCR Programming Project Candidate Number:

93

Too complete the greenhouse measurements section of the main menu I have added a title showing the
user what this section is related too and added labels with static text showing the user the readings
from the greenhouse. The text in these measurement labels will be made dynamic later in development
when their values will be continually updated to match the greenhouse readings.

OCR Programming Project Candidate Number:

94

OCR Programming Project Candidate Number:

95

The greenhouse status box follows the same structure as the measurements box. Once again, the values
will become dynamic later when they will be updated to match the greenhouse components status.

Moving onto the system log box this will contain a log of the system events and the user will be able to
scroll back in time to see previous events. Here I have added the background that sits behind the system
log for aesthetics.

OCR Programming Project Candidate Number:

96

A scrollview in kivy works by creating a label that is nested inside a scrollview. The scrollview has many
properties which can control how it functions. For this scrollview I have selected that the user will be
able to scroll up and down in the y direction but not in the x direction. Like will all elements in kivy I have
set a size hint and a position hint too position the element on the page. I have also added a white
background in the same way I did for our labels so that the text shows us better as opposed to the blue
background of the system log box. Nested inside the scrollview is a label which has an unlimited size in
the y direction which means its size will exceed the size of the parent scrollview. Since the size is larger
than the parent the scroll will kick in allowing the user too to navigate the text. Some padding is also
added to the label so that the text is moved in slightly from the side of the scroll view. Currently the text
is just a generic string of 100 lines for testing. Later, system events will be added to this label so that the
user can scroll through them.

OCR Programming Project Candidate Number:

97

Above is the code that I have used to add a background box for the graphs section of the main menu.

Below the graphs background box is a title label showing the user what the following section is about.
Along with a label that sits next to the dropdown box.

A dropdown menu in kivy is called a spinner. It takes a text parameter which in this case is set to
“temperature” this is the default value of the dropdown menu before the user selects a different option
from the dropdown. The dropdown menu can be positioned in just the same way as all other elements
in kivy using the size hint and a position hint. The options available in the dropdown menu are listed in
the values list of the spinner. Currently not all available values for the dropdown are in the list but later I
will add them in.

The final section of the main menu is the quick settings area where the user can adjust the settings of
the greenhouse such as turning the greenhouse on and off. Here I have added a background box for the
quick settings area in the bottom right of the screen.

OCR Programming Project Candidate Number:

98

I have used two labels too add the title of the quick settings box and for the text next to the greenhouse
on off toggle.

There will be an on off toggle next to the different settings in the quick settings box. Whilst kivy does
have a specific toggle element I found that it was not easy to implement. Instead for my own off toggle
buttons I have decided to use a label. This label will be styled as having a green background with the text
“on” when the toggle is on and then I will program the label so that once it is pressed the text swaps to
red and the text to “off”.

OCR Programming Project Candidate Number:

99

Mockup

Kivy

Above is the comparison between the mockup and then kivy file final implementation of the main menu.
The main differences can be seen in the styling of the drop-down menus, the on off toggle and the scroll
view. However, the functions of each are identical. I have struggled with implementing the scroll view in
kivy I have not been able to add a scroll bar next to the scroll view. When I come too programming the
system log, I will attempt to find a solution to this however it is possible I will change it too a label

OCR Programming Project Candidate Number:

100

without any scroll capabilities and instead append new system events to the text property of the label
and remove old events from the start of the text property.

Complete main menu code

OCR Programming Project Candidate Number:

101

OCR Programming Project Candidate Number:

102

OCR Programming Project Candidate Number:

103

OCR Programming Project Candidate Number:

104

OCR Programming Project Candidate Number:

105

OCR Programming Project Candidate Number:

106

OCR Programming Project Candidate Number:

107

OCR Programming Project Candidate Number:

108

OCR Programming Project Candidate Number:

109

OCR Programming Project Candidate Number:

110

OCR Programming Project Candidate Number:

111

OCR Programming Project Candidate Number:

112

Test Plan – Main Menu
In this testing plan I will be verifying the function of the dropdown menu and the scroll view. As the
toggle buttons have not been programmed yet I will not be including these in the testing plan. I am also
anticipating that the scroll view will fail the test plan as for reasons previously discussed it is not working
as required. I won’t be testing any of the labels or other elements as these have already been
implemented and tested in previous screens, so it is assumed these are working.

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Scroll down on
the scroll view

The scroll view
will move the text
down the screen

The scroll view did
not scroll the text

Fail

2 Scroll up on the
scroll view

The scroll view
will move the text
up the screen

The scroll view did
not scroll the text

Fail

3 Select one of the
drop-down menus

The list of
elements in the
drop-down will be
shown

The options in the
drop down were
shown

Pass

4 Select one of the
options in the
drop-down

The option will be
selected, and the
current option

The clicked option
was selected and
then displayed in

Pass

OCR Programming Project Candidate Number:

113

will replace the
text value of the
dropdown

the drop-down
box

1 Scroll down on

the scroll view
The scroll view
will move the text
down the screen

The scroll view did
not scroll the text

Fail

2 Scroll up on the
scroll view

The scroll view
will move the text
up the screen

The scroll view did
not scroll the text

Fail

The scroll view was previously working on my desktop computer however on my laptop the scroll view
does not seem to be working. I have decided that I will attempt to find a solution to the scroll view
issues once I begin to develop the system log. As depending on how I implement it will have a bearing
on the way I implement the scroll view. I suspect that I have not correctly imported the kivy scroll view
dependencies as I have followed there help pages for how to create a scroll view.

Development Log – Parameters screen
All the screens left to implement will use a combination of labels, buttons, dropdowns, and text entry
boxes. As I have already discussed how these work in kivy I will only provide a brief overview of
developing the final pages. These screens are just a different layout of the previously used elements
positioned and sized in a different way by changing their size and position hints. For this reason, I won’t
be completing a testing plan for the final screens as I am confident all the different elements are
working apart from the scroll view.

Above is a mockup of the GUI for the parameters page. The page is made up of two sections one for
setting the greenhouse parameters and one for controlling the output devices. The screen needs to have
a background set in the same way as previously and has the menu along the top with the parameters
button having a dark blue background to signify this is the current page. The output devices section has

OCR Programming Project Candidate Number:

114

multiple devices with toggle buttons and dropdown menus. Once again, the toggle buttons are not
functional at this stage and will be implemented later in development.

I have setup a new screen inside the kivy file and added this too the screen manager widgets along with
declaring a new class which is related to the parameters screen. This screen will be using float layout as
with all the other screens in this project.

The background color of the parameters screen will be green as usual.

OCR Programming Project Candidate Number:

115

The menu along the top of the parameters page is the same as on the main menu with the parameters
button being the dark blue one this time.

OCR Programming Project Candidate Number:

116

Half of the parameters screen is used for allowing the user to set new greenhouse parameters a
background box is added using a label and then the title is added using a label.

OCR Programming Project Candidate Number:

117

OCR Programming Project Candidate Number:

118

OCR Programming Project Candidate Number:

119

Inside the greenhouse parameters box, I have added labels for each parameter which can showing the
current value of that parameter. I have then added a text input box for each parameter which the user
can input their new desired value into. At the bottom of the parameters section there is a set button
which when pressed will store the new parameter values.

OCR Programming Project Candidate Number:

120

On the other half of the page is the output devices section where the user can control how the various
output device’s function.

OCR Programming Project Candidate Number:

121

OCR Programming Project Candidate Number:

122

There are 5 output devices which can be controlled they all follow the same structure as above. They
have a background box in light blue along with a title saying which device the box is controlling and then
a toggle button to turn the device on and off and a mode dropdown menu so the user can select what
mode the device is functioning in. In the GUI mockup the boxes were going to be a light blue outline
however I could not find a way too have a transparent box with a boarder so instead I swapped to use a
dark blue background for the output devices.

GUI mockup

OCR Programming Project Candidate Number:

123

Kivy

The kivy implementation of the parameters page is not completely true to the GUI design. As mentioned
in the output devices section I have swapped from using a light blue outline to using a full dark blue
background due to kivy restrictions. Other differences relate to the status on off toggle button and the
alignment of the boxes in the output devices.

Complete parameters code

OCR Programming Project Candidate Number:

124

OCR Programming Project Candidate Number:

125

OCR Programming Project Candidate Number:

126

OCR Programming Project Candidate Number:

127

OCR Programming Project Candidate Number:

128

OCR Programming Project Candidate Number:

129

OCR Programming Project Candidate Number:

130

OCR Programming Project Candidate Number:

131

OCR Programming Project Candidate Number:

132

OCR Programming Project Candidate Number:

133

OCR Programming Project Candidate Number:

134

OCR Programming Project Candidate Number:

135

OCR Programming Project Candidate Number:

136

Development log - Graphs screens
The graphs screen will be responsible for allowing the user to produce graphs of the data recorded from
the greenhouse. The right-hand side of the screen will be solely for displaying the graph produced and
the left side of the screen will feature different dropdown menus and text input boxes to allow the user
to adjust the x and y axis ranges and data. There will also be two buttons one to save a graph produced
by the user and another to load a graph previously produced by the user. As the graph will be generated
and displayed by a different library, I will leave the graph section on the right blank as this will be
implemented later.

The GUI for the graphs screen has been designed to allow the user to produce meaningful and
understandable graphs of the data recorded in the greenhouse. As opposed to viewing raw date which is
harder to interpret. This can be implemented in kivy using our previously used labels, buttons, and drop-
down menus.

I’ve setup the screen inside the python file and the kivy file.

OCR Programming Project Candidate Number:

137

Background color is green.

OCR Programming Project Candidate Number:

138

Menu is the same as always with the graphs button made dark blue this time.

The settings section on the left has a background box and a title.

OCR Programming Project Candidate Number:

139

OCR Programming Project Candidate Number:

140

OCR Programming Project Candidate Number:

141

Using labels, dropdown menus, text input boxes and two buttons I have set out all the different options
that the user must adjust the graph. The save and load button will later allow the user to save the graph
they have generated and too load graphs that they have previously made.

OCR Programming Project Candidate Number:

142

The right-hand side of the screen will be for the graph to be displayed on. I will be implementing the
graph at a later stage of development and so this section just consists of the background box and the
title for the time being.

Complete graphs screen code

OCR Programming Project Candidate Number:

143

OCR Programming Project Candidate Number:

144

OCR Programming Project Candidate Number:

145

OCR Programming Project Candidate Number:

146

OCR Programming Project Candidate Number:

147

OCR Programming Project Candidate Number:

148

Development log – Settings screen
The settings screen is the final screen in the GUI. On this screen the user can control all other settings
that have not already been shown on any of the other screens. The screen is split into 5 sections with
one section relating to the greenhouse status and scheduling another regarding email alerts and another
regarding adding and removing users also a settings file section allowing the user to load in saved
settings and finally a remote access section. Due to time constraints, I will not be implementing the
remote access feature of the greenhouse and so this section will simply show a label saying, “coming
soon”.

Here is the mockup I have made for the settings screen. As with the graphs screen, I will be replacing the
blue outlines with a solid dark blue background for the different sections of the screen. The screen does
not feature any new elements and so is just a case of positioning different elements and sizing them.

A class has been added to the python file to relate to the settings screen. The final widget in the screen
manager has also been added. At this stage all the different screens of the greenhouse have been added
I just need to write the kivy code to define its layout.

OCR Programming Project Candidate Number:

149

I have defined a new screen inside the kivy file which has the same name as the screen class I made in
python so that kivy knows they are the same. The screen is using float layout and has a green
background.

OCR Programming Project Candidate Number:

150

OCR Programming Project Candidate Number:

151

The menu has been adjusted so that the settings button has the dark blue background.

A large background box covers the rest of the screen which will contain the full settings section.

I have used a label too add a large label showing the user that this is the full settings page.

OCR Programming Project Candidate Number:

152

OCR Programming Project Candidate Number:

153

The alerts section consists of a toggle button, two text input boxes and a test button which will be used
to send a test email to the users email address to ensure the email alerts are working as expected.

OCR Programming Project Candidate Number:

154

The settings file area will let the user load a pre saved file into the greenhouse altering all the settings to
the settings of that file. This section features a drop-down menu and two buttons to save and load files
into the greenhouse.

OCR Programming Project Candidate Number:

155

OCR Programming Project Candidate Number:

156

The greenhouse will be turned on and off using a toggle button and can be scheduled by entering the
start and end operating time of the greenhouse into two text input boxes.

OCR Programming Project Candidate Number:

157

OCR Programming Project Candidate Number:

158

The user will be able to add and remove users using the following area of the full settings page. There is
a text entry box for entering the username and one for the password. There are then two buttons one
for adding the user and another for removing the user.

OCR Programming Project Candidate Number:

159

The final section of the settings screen is the remote access area as discussed due to time constraints
this feature won’t be included so I have added a simple coming soon sign to this area of the GUI.

Complete settings page code

OCR Programming Project Candidate Number:

160

OCR Programming Project Candidate Number:

161

OCR Programming Project Candidate Number:

162

OCR Programming Project Candidate Number:

163

OCR Programming Project Candidate Number:

164

OCR Programming Project Candidate Number:

165

OCR Programming Project Candidate Number:

166

OCR Programming Project Candidate Number:

167

OCR Programming Project Candidate Number:

168

OCR Programming Project Candidate Number:

169

Review
In this iterative stage I have developing the graphical user interface of my greenhouse system. The
layout of the GUI is complete and should not require any modifications unless further into development
I deem it necessary to as some more features. The GUI is responsive to different screen sizes and is cross
platform compatible with any device that can run python. The remaining focus of this project will be to
develop the back end so that the greenhouse and the GUI work together displaying the correct
information and carrying out the correct functions for the plan environment.

OCR Programming Project Candidate Number:

170

Iterative Stage 8 – Login
Overview
In this iterative stage I will be developing the login section of my project. The main aims of this stage will
be to produce class with the ability to validate user details and to add new users. The login must be
validated to check the user exists and ensure that the password is dealt with securely. I will be using the
hash lib library on python to deal with hashing the password.

Requirements
All passwords will be stored in hashed form this will mean even if somebody gets hold of the users file
there is no way for them to read the users passwords. In my greenhouse project all users will access the
same data so there are no requirements for different user environments. Once a user logs in they have
access to the same interface and data as all other users. The user details will be stored in a text file
inside the same directory as the main system files. I have decided that all validation of user inputted
data will be carried out on the side of the kivy class. So, the user’s class will not be responsible for
making sure the user’s password is long enough and other validation requirements this will be handled
inside the login kivy screen class.

Class diagram

Users

-file: string
-users: dictionary-

+updateFile()
+addUser()

+removeUser()
+login()

OCR Programming Project Candidate Number:

171

Flow chart

Data Structure Data Type Scope Purpose Validation required
File String Local Stores the file

path of the user’s
text file

users Dictionary Local Store all the users
and the
associated
passwords

Development Log

In the user’s class I will be using the hashlib library to handle the hashing of passwords. A hash is a one
way encoding of data which cannot be undone. This allows me to store the users’ passwords without
much security as even If a malicious party got hold of the file, they would only see the hash of the
password. Since this means I cannot decode the hash to compare it to the password which the user
enters on login I will have to hash the password which the user enters and compare this to the stored
hash for that user inside the user’s file.

OCR Programming Project Candidate Number:

172

The purpose of the user’s class is to validate user logins and also to handle adding and removing users
from the users’ file.

When the class is initialized, it is passed the path of the user’s file. The users file is then opened with the
identifier f. A loop then iterates over all the lines inside the file. Each line in the users file consists of the
username and the password for that user stored in a hashed form separated by a comma. First, I have
used rstrip to remove any special characters specifically in this case we are concerned about removing
the “\n” new line character at the end of each line. Once this has been removed the line is then split
about the comma and each value either side of the comma assigned to a variable. The username is then
added to the dictionary as a key with the value being the user’s password hash. Once this loop is
complete there is a dictionary called users which stores all the user details inside the users’ file.

When a user is added or removed the change will be made to the classes user’s dictionary. However,
this will not mean the change has been saved into the user’s text file. The job of the updatefile method
is to write the contents of the user’s dictionary to the user’s text file. This way there will be no
differences between the two. This class will only be called when a user has been added or removed from
our users’ group. The method begins by opening the users text file but this time in write mode. The
write mode means that we overwrite all data in the file. Next a loop goes through all the keys inside the
user’s dictionary. For each key a line is written to the file with the user going first then a comma
followed by the users recorded password hash. A new line is also included using the “\n” character so
that users each have their own line in the text file.

OCR Programming Project Candidate Number:

173

When adding a user to the group of users two parameters are required the username of the new user
and the plain text version of their desired password. First there is a check on line 35 to make sure that
the username is not already in use as there can only be one user with a specific username. To do this
check I have checked to see if the username is in the user’s dictionary and then used the NOT keyword
so that the selection is only carried out if the user does not exist. Providing the username is not already
in use a new user is created with a value of the password after it has been salted. In the case a user has
been added the updateFile method is called so that the changes made to the dictionary are also
reflected inside the user’s text file. I have then returned true so that I am able to confirm if a user has
been added or not. In the case a user is not added then false is returned.

The remote user method has the same parameters as the previous add user class. For this method, the
given password must match the password of the user that is being removed for the action to be
completed. First there is a conditional If statement to see if the user exists. As long as the user exists, we
then check to see if the given password as a parameter of the method matches the stored password of

OCR Programming Project Candidate Number:

174

the user. As long as the password hashes match and the user exist the user is removed from the
dictionary and the users text file updated. In the case that the user either doesn’t exist or that the wrong
password was given then false is returned.

The method that will be used most from the user’s class is the login method. This will be used when the
user logs in. The job of this method is to compare a given username and password against the stored
usernames and passwords and either log the user in or deny access. The two parameters are the
username which will come from the username box in the kivy login screen and the password which is
also captured from the kivy login screen password box. The method then sees if the user exists and
validates the user by comparing the saved hash of the password and the inputted password from the
user. If the user Is logged in, then the Boolean True is returned otherwise False is returned. No
indication is given as to if the issue was with the user’s password or there username in the event that
login fails this is for security reasons.

Test plan – Users class

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Add a user The user will be
stored in the
user’s text file
along with their
password in
hashed form on a
new line

The user was
added and stored
in the user’s text
file

Pass

2 Add a second user Same as test
number 1 but this
is to check that a
new line is being
added when the
users are written
into the file

The second user
was added and
stored correctly
on a new line in
the text file

Pass

OCR Programming Project Candidate Number:

175

3 Remove one of
the added users

The user will be
taken out of the
user’s text file

The user was
removed from the
group of users

Pass

4 Login using valid
user details

True will be
returned to
indicate that the
user details were
correct

Login was
successful

Pass

5 Try to login with
invalid details

False will be
returned to show
the user has not
been logged in

Login was
unsuccessful

Pass

6 Try to add a user
which already
exists

The user won’t be
added again as
the user already
exists. False
should be
returned

The user was not
added, and all
other users were
unaffected

Pass

7 Try to remove a
user which does
not exist

False will be
returned and no
other users will be
removed from the
group of users

No users were
removed

Pass

The testing plans has shown that the user’s class is very robust and can handle the requirements of
managing the users for the greenhouse GUI. It is now time to implement this class into the GUI so that
the user can login.

Development log – Implementing into Gui

When the user fails to login a message will need to be displayed informing them that there is an issue
with the entered login details. To do this I have added a label which sits below the login button on the
login screen. The label has an id of “loginMessage” to allow me to access its properties from inside
python by referencing this id. The text property is initially empty as we will only be displaying a message
to the user if they unsuccessfully login.

Inside the greenhouse.py python file I have imported the user’s class which has just been developed.
Further to this I have initialized an instance of this class with the users file passed upon initialization.

OCR Programming Project Candidate Number:

176

I have added a method inside the login screen class called check password. This will be called when the
user selects the login button. To validate the users inputted details the login method of the user’s class
is called. This will evaluate as true if the details are correct and so I have passed to it the text inside the
username and password text input box at the time when the user selects the login button. Kivy allows us
to access the properties of elements using their id. In this case the element with the id username is
belonging to the loginscreen class and getting its text property will return the current text inside the text
input box. The same is done for the password text input box. To log the user in the screen manager is
used to change the current screen to the main menu. If the user details inputted are not correct, then
this is when we adjust the text property of the new element we added to inform the user that there
login attempt was unsuccessful.

Here you can see the message which is displayed to the user when the incorrect details are entered, and
they try to login.

When the login button is pressed, I need the check password method to be called to do this I can use
the on-press property in the login button element inside the kivy file. I have decided to save time that I
will not include any validation of the username and password entered by the user.

OCR Programming Project Candidate Number:

177

Inside the settings screen the user can add and remove users from the group of authorized users. Here is
the implementation for handling the add user event. When the user selects the add user button the add
user procedure is called. We attempt to add the user using the details provided by the client. If this is
successful, then a message is displayed to the user and otherwise if there is an issue we notify the user
that the username already exists and so couldn’t be added.

To display messages to the user regarding the success and failure of adding and removing users I have
added a new label inside the user’s section of the settings page. This label is initially blank and has an id
of user amendment message to allow it to be accessed inside python.

The process for removing a user is the same. A procedure called remove user is added inside the settings
screen class which is called when the user clicks the remove button on the settings screen. This time if a
user is added successfully, we let the user know using our label we just added or if the user does not
exist or the password is incorrect so the user can’t be removed we let them know that.

OCR Programming Project Candidate Number:

178

Above you can see the location of the message displayed to the user when they add or remove a user.

Test Plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Login using valid
user details

Login should be
successful

The user was
logged in
successfully

Pass

2 Login using invalid
user details

Login should not
be successful

The user was not
logged in and an
error message
shown

Pass

3 Add a user using
valid new user
details

The user should
be added

User was added
successfully to the
user’s text file

Pass

4 Try adding a user
which already
exists

The user should
not be added

The user was not
added, and an
error message
was shown

Pass

5 Remove a current
user

The user should
be removed

The user was
removed

Pass

5 Remove a user
which does not
exists

The user should
not be removed

No users were
removed, and an
error message
was shown to the
user

Pass

6 Remove a user
which exists but

The user should
not be removed

The user was not
removed, and an
error shown

Pass

OCR Programming Project Candidate Number:

179

enter an incorrect
password

Review
The login side of this project is now completed. The user can authenticate themselves to gain access to
the greenhouse system and are also able to add new users and remove existing users. Due to time
constrains I have not added any validation to the usernames and passwords which the user enters. In an
ideal world I would have some restrictions on minimum password and username lengths along with
requirements for including a special character and a capital letter in the user’s password. However, the
passwords are held securely using hashing so the login system is suitably secure.

Iterative stage 9 – Greenhouse Parameters
Overview
The greenhouse system will have 5 environmental parameters which will be controlled by the various
devices inside the greenhouse. The user will be able to see the currently set parameter values and
change these values on the parameters page. In this iterative stage I will be implementing the code to
display the saved parameter values to the user and the code that will allow them to change these
values. The parameters will be saved inside a text file.

Requirements
In this iterative stage I will begin development of the key class of this whole project called green house
manager. This class will be responsible for controlling the greenhouse and managing all devices and
settings.

Class Diagram

Development log
The green house manager class will extend far beyond managing the saved parameters however in this
stage I will be developing just the parameters side of the class. The green house manager won’t be able
to control the greenhouse unless it knows the values it is trying to achieve in the greenhouse. Hence it
would seem smart to begin developing the parameters functions first.

GreenHouseManager

-parameters: dictionary

+loadParameters()
+updateParameters()

+getParameter()
+setParameter()

OCR Programming Project Candidate Number:

180

When the class is initialized, a dictionary is made which will store the parameters for the greenhouse. A
method of this class called load parameters is ran which will be responsible for loading the parameters
from the text file. This method will be developed in a moment.

The load parameters method works just the same as when we read the users text file. The method
opens the text file in this case parameters.txt in read mode as the identifier f. Then a loop moves
through the file line by line splitting each line at our designated split character in this case “,” and then
assigns the parameters and their values to the parameters dictionary. The advantage of opening the file
using “with” is that once the nested code inside the “with” statement is complete the file is
automatically closed. This just helps to avoid situations where the file is open twice or being written and
read from at the same time which obviously will cause issues.

When the user has made changes to one or more of the greenhouse parameters then the parameters
text file ill need to be updated to save these changes. This is the job of the update parameters method.
The method does the opposite of the load parameters method by opening the file in write mode and
writing the contents of the parameters dictionary to the file.

OCR Programming Project Candidate Number:

181

The getter method get parameter is responsible for returning the value of a specific parameter. The
desired parameter is passed as an argument to this method and its corresponding value is returned.

This setter method is responsible for changing the value of specific parameter. Both the parameter to be
changed and its new value are passed as parameters.

Test plan – Green house manager class

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 load parameters The parameters
inside the text file
should be loaded

The correct values
were added to the
parameters
dictionary

Pass

2 Use the get
parameter
method to print
out a parameter
value

The value of the
desired
parameter which
was passed to the
method should be
printed

The given
parameters value
was returned

Pass

3 Use the set
parameter
method to adjust
the value of a
parameter

That parameters
value should be
updated in the
dictionary

The value was
updated

Pass

4 Use the update
parameters
method to save
the changes from
test 3 to the text
file

The changes
should be saved
into the text file

The changes were
indeed saved

Pass

Development log – Implementing into kivy
The ability the edit the saved parameters and to view the current parameters now needs to be
implemented into kivy.

OCR Programming Project Candidate Number:

182

I have added an error message into the parameters section of the gui. Just like for the login this error
message is going to be used if the user enters some illegal data such as a string instead of a numerical
parameter value.

The green house manager class has been initialized to allow us to use its methods.

Inside the parameters screen class, I have made the method update displayed parameters. This class
sets the text value of the labels responsible for showing the user the current parameter values. For each
parameter I have set the corresponding label to be equal to the parameter value. Here I am using the
getter method get parameter to get the value of each parameter.

When the kivy screen manager transitions into a different screen it automatically calls a procedure
called on enter. In the case of the parameters screen we want the parameter values shown to be
updated each time the user goes to the screen so that they match the values of the saved parameters
inside the text file. So, when this function is called, we run the update displayed parameters method so
that the parameters are ensured to be up to date.

The parameters screen also gives the user the ability to enter new parameter values which the green
house manager will then aim to keep inside the greenhouse. They can do this by entering new values
inside text entry boxes and then selecting the save button. The update parameters method will be run
when the user clicks the save button and will see if any valid changes have been made and if so will save
these changes.

OCR Programming Project Candidate Number:

183

As saving to a file is time consuming, I am using a flag to check if any valid changes have been made by
the user as if none have been made I can then avoid writing to the parameters file.

For each of the 5 parameter values there is a check to see if the user has entered anything inside its new
value text box. This check is done by seeing if the length of the text entry box text parameter is larger
than 0. If this is the case, then it is clear the user has entered a value. When the user enters a new
parameter value, I use the green house manager setter method to update the value of that parameter
inside the parameters dictionary to match the value inputted into the text box. As the text box records
strings the text value must be changed from a string into an integer. For some unknown reason python
doesn’t seem to like converting the kivy text values straight into an integer so I’ve had to add an
intermediary step of converting to a float to solve this issue. If a change is detected in any of the text
input boxes the flag becomes true so that the file will be updated.

Of course, this introduces a case where the user could have entered a string into the text box and then
when the program converts this into a float a value error will occur. When I say a string, I mean the user
could have entered “lorry” as opposed to “100” of course both are strings but only the latter can be
converted and represented as an integer. To handle this event a try except statement is used to catch
the value error and display an error message to the user without interrupting the program flow.

OCR Programming Project Candidate Number:

184

If the flag is true, then a valid change has been made to one or more of the parameters. So, these
changes will need to be saved into the parameters text file to do this the green house manager update
parameters method is called which will write the current contents of the parameters dictionary into the
text file for permeant storage. Once the changes have been saved the update displayed parameters
method is called so that the parameters displayed on the screen are adjusted to match their new values.

Finally, the 5 text entry boxes for each of the parameters are cleared so that they are ready for when the
user next wants to enter a new parameter.

I have connected the update parameters method to the set button in the parameters page so that when
its pressed all the actions described above are carried out to result in the parameters being saved.

Test Plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Open the GUI The parameters
should be loaded
into the GUI and
displayed to the
user

The correct values
were added
shown on the
parameters
screen in kivy

Pass

2 Enter a new value
for one of the
parameters and
set it

The new
parameter value
should be saved
to the parameters
file and the text

The value was
saved and cleared
from the text box
and shown to the
user

Pass

OCR Programming Project Candidate Number:

185

box should be
cleared and the
new value should
also be shown on
the parameters
page

3 Try to enter a
string such as
“test” and set this
as a value

An error message
should be shown
to the user and
the value should
not be saved to
the file

The error
message was
shown asking the
user to enter a
number

Pass

Review
The greenhouse parameters are now saved inside a text file and loaded into kivy for the user to view
and change. These parameters will be the target values which the greenhouse will try stick to. The
system for setting values is robust and does not allow any invalid data to be entered.

Iterative stage 10 – Output devices
Overview
The second half of the parameters screen is where the user can turn on and off the different output
devices inside the greenhouse and change the mode of these devices. Each device will have two modes
manual and adaptive. In manual mode the device will always be on, and the greenhouse manager won’t
turn it off if the parameter which it governs is exceeded. So, if the heating element is in manual mode it
will always be on regardless of if the greenhouse surpasses the parameter set by the user. The second
mode called adaptive is when the greenhouse manager will turn the device on and off to control the
greenhouse environment. So, if the temperature gets to warm then the lamp goes off and the fan will
open.

Requirements
In this stage I will be creating a file to save the status and mode of each output device. I will also be
adding methods to the greenhouse manager class to load, update, get and set these different values.
During this stage I will also be writing the code to make the on and off toggle buttons function.

Class Diagram

OCR Programming Project Candidate Number:

186

Pseudocode

GreenHouseManager

-devicesStatus: dictionary
-devicesMode: dictionary

+loadDevices()
+updateDevices()

+getDeviceStatus()
+getDeviceMode()
+setDeviceStatus()
+setDeviceMode()

OCR Programming Project Candidate Number:

187

Development log

Inside the green house manager class constructor, I have created two dictionaries which will be used to
store the status of each device and also the mode of each device. After this I have called the method
load devices which will then read the data from our devices file and add it to the two dictionaries. When
I was deciding how to implement the data structures to store the devices status and mode, I considered
using a single dictionary with a key equal to the device name and then an array as the value with the
first value of the array holding the status and the second the mode. However, I elected against this
approach as its wasn’t obvious when accessing the data if you were getting the status or the mode
unless you remembered that the status was index 0 and mode index 1. I feel this was using two
dictionaries is more readable and will lead to less issues down the line.

The load devices method needs to open the devices.txt file which I am using to store the status and
mode of each device and add them to the status and mode dictionary. To store the data, I am using a
text file just like with the parameters. Each value is separated by a comma and each different record is
separated by a new line. In this case we are storing three values the name of the device its status and its
mode. In the method the file is first opened in read mode with the identifier f. Then the file is iterated
over line by line. Each time the line is split up at the designated special character and assigned to three
variables. Finally, the devices status is added to the status dictionary with the device name as key and

OCR Programming Project Candidate Number:

188

the same for the device mode in the mode dictionary. As I’m using with open there is no need to close
the file this is automatically done at the end of that code block.

When a change is made to a device mode or status the devices file will need to be updated so the
change is saved into memory. The file is opened in write mode this time with the same identifier. Then
we iterate over each key inside the devices status and write a new line for each device with the device,
status and mode being written. Since each device has a status and mode it does not matter if we loop
over the keys of the devices Status or devices mode dictionary as they both have the same number of
identical keys.

The devices need two getter methods to return the value of a specific device’s status and mode.

Two setter methods are also implemented to set the values of different devices.

OCR Programming Project Candidate Number:

189

OCR Programming Project Candidate Number:

190

The update displayed device status method inside the parameters screen class will be used to set the
value out on off status toggles for each device. This method will be called on entry to the parameters
screen to ensure the values shown on screen for device status match that of the saved values. For each
device the text of the toggle is set to the value of its status. Which will be either on or off to find its
value I’m using the getter method get device status with the parameter corresponding to the right
device. Then a selection if statement looks to see if the device status is off if this is the case then the
toggle buttons background color is swapped to be red. In the alternative case that the text is on then the
background color is made green. As by default the background color of all these toggle buttons are
green as I defined inside the kv file I could probably do away with the else part of the if statements.
However, I’ve decided to keep it for robustness it could be useful if I ever need to refresh all the toggles
to make sure their values are correct.

OCR Programming Project Candidate Number:

191

The dropdown menus to select the device mode also need to be updated to match the saved value for
that device upon entry to the parameters screen. To do this I have set the text value of each dropdown
menu to equal the current mode of the related device. For the last two methods I have added ids to the
elements in question to allow me to access their properties from inside python.

Both these two new methods are run on entry to the parameters screen to make sure the values for
device status and also mode are matching to the current saved value.

OCR Programming Project Candidate Number:

192

OCR Programming Project Candidate Number:

193

OCR Programming Project Candidate Number:

194

The code for each of the five toggles on off buttons is the same just with a different function name and
also the right id for that toggle used. When the toggle is clicked the user wants to change the button
from either on to off or from off to on. When the button is pressed the toggle method for that button is
called. The function checks the current text of the toggle. If the text is currently “off” then the toggle
needs to be set into the “on” position. So, the text for the toggle is changed to “on” and the background
color is set to be green. The status of that device is also changed using the setter method set device
status. If the text is currently “On” then the reverse happens. The text is set to equal “off” and the color
becomes red. After this the update devices method of the green house manager is called so that the
changes made are saved into memory. When I was implementing the toggles, I considered having one
function with a device argument which took the device which was being turned on or off. However, I
was not able to find a way to concatenate kivy ids to include the id of the device passed as a parameter.
So, I was forced to make separate functions for each of the toggles.

OCR Programming Project Candidate Number:

195

OCR Programming Project Candidate Number:

196

When the user selects a new mode for a device using the dropdown menu or as kivy call it spinner that
change needs to be recorded in the greenhouse manager class and saved to the devices text file. Unlike
buttons in kivy spinners don’t have a “on_press” attribute instead for spinners you need to use the
“on_text” attribute which is called when the user selects a new value and hence changes the text of the
dropdown menu. For each dropdown I have created a device spinner method and binded this to the
“on_text” property of the delated spinner. When the spinners’ function is called there is a check to see if
the text is manual if this is the case then the greenhouse manager mode for that device is updated to be
manual and otherwise it is set to adaptive. Finally, the greenhouse manger update devices method is
called to update the devices.txt file. Rather annoyingly the “on_text” parameter is called whenever the
text of a drop-down menu is changed not only by the user in the gui but also when the text is changed
via id reference inside python. This means that when the GUI loads, and the update displayed device
mode method is ran on entry to the screen for each of the spinners a change of text is occurring
meaning this then sets off the spinners “on_text” parameter. So, in effect the screen is now being
loaded then getting the mode values from the devices text file and assigning them to the spinners for

OCR Programming Project Candidate Number:

197

each device which then sets off “on_text” meaning the value is then written back to the file.
Unfortunately, there is no way to get around this.

Testing plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Set the heating
element status to
on

Status will be on
in the gui and in
the devices file

 Pass

2 Set the heating
element status to
off

Status will be off
in the gui and the
devices file

 Pass

3 Set the fan status
to on

Status will be on
in the gui and in
devices file

 Pass

4 Set the fan status
to off

Status will be off
in the gui and in
the devices file

 Pass

5 Set the leds status
to on

Status will be off
in the gui and in
the devices file

 Pass

6 Set the leds status
to off

Status will be off
in the gui and in
the devices file

 Pass

7 Set the pump
status to on

Status will be on
in the gui and in
the devices file

 Pass

8 Set the pump
status to off

Status will be off
in the gui and in
the devices file

 Pass

9 Set the heating
mode to manual

Mode will be
manual in gui and
in the devices file

 Pass

10 Set the heating
mode to adaptive

Mode will be
adaptive in gui
and in the devices
file

 Pass

11 Set the fan mode
to adaptive

Mode will be
adaptive in the
gui and in the
devices file

 Pass

12 Set the fan mode
to manual

Mode will be
adaptive in the
gui and in the
devices file

 Pass

13 Set the LEDs
mode to manual

Mode will be
manual in the gui

 Pass

OCR Programming Project Candidate Number:

198

and in the devices
file

14 Set the LEDs
mode to adaptive

Mode will be
adaptive in the
gui and in the
devices file

 Pass

15 Set the pump
mode to manual

Mode will be
manual in the gui
and in the devices
file

 Pass

16 Set the pump
mode to adaptive

Mode will be
adaptive in the
gui and in the
devices file

 Pass

17 Set the servo
mode to manual

Mode will be
manual in the gui
and in the devices
file

 Pass

18 Set the servo
mode to adaptive

Mode will be
adaptive in the
gui and in the
devices file

 Pass

Review
The parameters page is now fully implemented with the ability to view current device modes and status
along with seeing the current greenhouse parameters along with ability to change all these values and
that be reflected inside their text files.

Iterative stage 11 – Greenhouse settings
Overview
There are a few final settings which need to be stored before I can begin to implement the greenhouse
environment management functions which will continually monitor and adapt the greenhouse
environment. In this iterative stage I will be implementing the overall greenhouse settings file which will
store certain values regarding the greenhouse such as the status of the greenhouse, the mode of the
greenhouse and schedule of the greenhouse.

Requirements
During this stage I will be setting up the general greenhouse settings. This will require a settings text file
too store the 4 general settings. Which is greenhouse status this will decide if the greenhouse will be on
or off, mode which will determine if the greenhouse runs continually or only during a set time period
and start / end time which will determine when the greenhouse will run if it is in scheduled mode.

Class Diagram

OCR Programming Project Candidate Number:

199

Development log

The settings methods of the greenhouse manager class are essentially the same as the parameters and
devices methods. Inside the constructor I have created a settings dictionary to store the general settings
of the greenhouse. I have also called the load settings method to fill the settings dictionary.

The load settings method opens the settings file and writes the settings values to the settings dictionary.

Whilst the update settings method writes the contents of the settings dictionary to the settings text file.

GreenHouseManager

-settings: dictionary

+loadSettings()
+updateSettings()

+getSetting()
+setSetting()

OCR Programming Project Candidate Number:

200

A getter and a setter method are used to allow for the setting and getting of general setting values.

Inside the settings screen class I have made an update displayed general settings method which is
responsible for setting the status, mode, and time values of the 3 greenhouse general settings on the
settings page. This method uses the get setting method to get the required value and then assigns that
to the label inside kivy. The status toggle button is also set to the right color.

The on enter function is used to make sure that each time the user enters the settings screen the
general settings are updated. This ensures they are always up to date.

OCR Programming Project Candidate Number:

201

When the user decides to change the mode of the greenhouse, they do this via the dropdown menu.
The set mode spinner method is responsible for updating the stored value of the greenhouse mode to
reflect the user selected mode. The method simply checks the text value of the dropdown menu and
then sets the setting equal to that value. At the end of the method the update settings method is called
so that these changes are recorded into the text file. I have binded this function to the on-text property
of the dropdown menu so it’s ran when a new option is changed.

The user is given the ability to set the start and end time of the greenhouse operations. These times are
set via two text input boxes and then saved when the user selects the set button. The set time method
will be governing the validation and saving of this data and will be called when the set button is clicked.
The process for validating the start time and end time is the same the process is repeated twice inside
this method just using the other text input the second time. To begin with a flag is set to be true.
Providing this flag is still true once validation is complete then the data entered by the user is okay. The
first validation step is to try and split the input at the “:” character. If the user has entered the correct
time format, then this will result in 3 list items inside an array. The length of the produced array is
compared to 3 and if not equal then the flag becomes false as the format can’t be “hh:mm:ss” as
required. The split function in python does not produce an error if there are no “:” characters present it
just returns the original text so its safe to do this test if the user enters no “:” characters.

OCR Programming Project Candidate Number:

202

The next test is to see if the 3 constituent parts are all 2 digits long. The for loop iterates over the time
which has been split into the following “hh”, “mm” and “ss”. A check is made to see if the length is not
equal to 2 then the flag becomes false.

There are only 11 valid characters which the user can enter the time. These are defined in the valid
characters array. An iteration goes through the time text and checks if the letter is not a valid one then
the flag is false to fail the validation.

This check looks to see if the user has entered any characters if that’s the case then the flag is false.

The final validation check is to see that the second and fifth characters are “:”. This check creates a
situation where if the user has not entered enough characters, then we will be trying to access an index
out of range. To account for this case, I am using a try except statement. In the event that the index Is
out of range an index error will occur which will be handled by the except statement which will set the
flag as false.

OCR Programming Project Candidate Number:

203

The same validation process is carried out on the second time.

Providing both the flags are still true then it is okay to update the values for the start and end time.
These values are set using the settings setter method and saved using the update settings method. In
the case validation has not been passed then an error message is shown to the user.

OCR Programming Project Candidate Number:

204

The set time method is run when the set button is pressed inside the GUI.

OCR Programming Project Candidate Number:

205

Due to time constrains I am stripping out luxury features such as the remote access and the email alerts.
This means the only setting inside the main menu quick settings section will be the on off toggle button
to turn the greenhouse on and off. Due to this I’ve changed the quick settings area into a large
greenhouse on off toggle switch. Clicking this will make the greenhouse turn on and off. Above is the
kivy code and a screenshot of the button.

The update status toggle sets the value and color of the status toggle and is ran on entry to the screen.

Finally, the status toggle method is duplicated in the main menu screen and binded to the status button.

Test plan

OCR Programming Project Candidate Number:

206

Test Number Test Plan Expected

Outcome
Actual Outcome Pass/Fail

1 Turn the status on
the main menu to
on

Status will be on
and saved to file

Status was on and
correctly saved

Pass

2 Turn the status to
off in the main
menu

Status will be off
and saved to file

Status was off and
was correctly
saved

Pass

3 Turn the status to
on in the settings
page

Status will be on
and saved to file

Status was on and
saved

Pass

4 Turn the status to
off in the settings
page

Status will be off
and saved to file

Status was off and
saved

Pass

5 Enter a valid time
into the start and
end time boxes
and set it

Time should be
accepted and
saved

Times were saved Pass

6 Enter an invalid
time into the time
boxes and set it

Error message
should be shown,
and times not
saved

Error message
shown and no
changes made to
settings file

Pass

7 Enter “22:00” into
the time box.

The time is not
valid so will be
denied

Error message
shown and no
changes made to
settings file

Pass

8 Enter “111:00:23”
into the time box

The time is not
valid so will be
denied

Error message
shown and no
changes made to
settings file

Pass

9 Enter “aa:ff:ss”
into the time box

Time is not valid
so will be denied

Error message
shown and no
changes made to
settings file

Pass

10 Enter “” into the
time box

Time is not valid
so will be denied

Error message
shown and no
changes made to
settings file

Pass

11 Enter “10:2345”
into the time box

Time is not valid
so will be denied

Error message
shown and no
changes made to
settings file

Pass

Review

OCR Programming Project Candidate Number:

207

The final settings from the greenhouse are now being saved into the settings.txt file. These settings are
displayed to the user on both the settings page and in the main menu where the greenhouse status is
shown.

Iterative stage 12- Greenhouse live measurements and device status
Overview
Whilst the greenhouse Gui is running the live measurements from the greenhouse and the current
status of each device needs to be shown to the user. These values will need to be periodically refreshed
to ensure that they are up to date. The device status will need to be stored inside the greenhouse
manager class and then fetched. Whilst the enviro and moisture class will be used for the
measurements.

Requirements
Two functions to update the status and measurements must be ran periodically. They should both
display the time at which the reading was made. They will make use of the greenhouse manager class to
get current device status, the enviro class to take sensor readings and the moisture class to see if the
plant needs water. The current device status is different to the device status which the user can set on
the parameters page. The current device status is to do with if a device is currently in operation such as
the light being on whereas the device status is if the device is enabled by the user.

Class Diagram

The two functions will belong to the main kivy app class and will be added to the kivy clock inside the
build method of the main app.

Development log
The kivy clock object allows for a function to be scheduled repeatedly without causing any interruption
to the kivy gui. Without using some form of multiprocessing any functions called would cause the kivy
gui to freeze for the time the function takes to execute. The clock object handles the execution of any
given functions concurrently without interrupting the gui. The clock has a schedule interval method
which will be most useful for this project. The method takes the function to be ran repeatedly and a
time interval at which the function will be executed.

MainApp

+updateDisplayedMeasure
ments()

+updateDisplayedStatus()

OCR Programming Project Candidate Number:

208

The first method is called update displayed measurements and is responsible for updating the label
values for the different measurements. This method has one parameter called dt which won’t have any
use inside the code I will be writing but is a required parameter for the clock object.

The first label to update is the time stamp label which will show the time that this function was ran and
hence the time at which all the measurements were taken. Since this method belongs to the main app
class of kivy it can’t access kivy ids using the self-keyword. Since self can only refer to objects belonging
to the current object a different method needs to be used to access ids. Each screen is added to the
screen manager, so all objects’ parents is the screen manager. This is the root into accessing elements
from outside their class. To access an id first a screen is accessed by using get screen with the desired
screen as a parameter. Then the id can be accessed as usual by referencing the id and then the
parameter which is required in this case text. The value of this label needs to be set to the current time
and date. The current time and date are loaded using the time library which I’ve imported for this job.
The time library has a feature called strftime which takes a local time object as a parameter and allows
for it to be formatted into a desired format. I have specified the format should be hours, minutes, and
seconds and then month, day, and years. A time object is generated by doing local time which is passed
as the object to be formatted into a string by the strftime method.

To set the value of the internal temperature string the element is referenced in the same way as
described above and then its text property is set to equal the current sensor reading from the
greenhouse. Sensors is an instance of the enviro class which is responsible for getting values from the
greenhouse.

Updating the soil moisture is a little more complex since the moisture class is written to return true
when the plant needs watering and false when it does not. This would look odd if the label read “Soil
moisture level: True/False”. To overcome this an instance of the moisture class called soil moisture is
queried. If the result is true, then the plant needs more water, and the moisture label is set to equal
“soil moisture level: low” otherwise the water levels are okay, and the text is set to be “Soil moisture
level: Okay”.

OCR Programming Project Candidate Number:

209

The final three measurements are set by getting values from the enviro class. A quick note is that I have
changed the name of all the methods inside the enviro class to have get in front of them so where the
method was once called “temperature” it’s now called “getTemperature” this was just to better explain
its job and make the code more understandable.

To record the status of a device I’m going to be using a dictionary inside the manager class. All devices
are off when the greenhouse is started so their values reflect this. I’ve also made a getter method to get
the status of a device. It takes the device as a parameter and then returns its current value.

The update displayed status method is very similar to the update displayed measurements method. The
update time is set in the same way. For the devices, the getter method created above is used to display
the current value onto the screen.

Inside the kivy build method I have added both methods I have just created which are responsible for
updating the measurements and status to the system clock. This means that the moment the app is built
the values will be constantly updated. I have scheduled them to be ran every 2 seconds as during

OCR Programming Project Candidate Number:

210

development I found this was the ideal time so that the user had time to read values, but they were not
massively out of date when they did.

Test Plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Turn on the
greenhouse and
check that the
internal
temperature is
updating

The temperature
value will be
updated every 2
seconds

The temperature
value was
updated every 2
seconds

Pass

2 Turn on the
greenhouse and
check that the soil
moisture is
updating

After watering the
plant, the label
should go from
low to okay

The value was
updated after I
watered the plant

Pass

3 Turn on the
greenhouse and
check that the
light intensity is
updating

The light intensity
value should be
changing every 2
seconds

The value was
changing every 2
seconds

Pass

4 Turn on the
greenhouse and
check that the
humidity is
updating

The humidity
should be
changing every 2
seconds

The value was
changing every 2
seconds

Pass

5 Turn on the
greenhouse and
check that the
pressure is
updating

The pressure
should be
changing every 2
seconds

The value was
changing every 2
seconds

Pass

6 Turn on the
greenhouse and
check the pump
matches the
dictionary value

The value from
the current device
status dictionary
should be shown
on the screen

The correct value
was shown

Pass

7 Turn on the
greenhouse and
check the heating
element matches
the dictionary
value

The value from
the current device
status dictionary
should be shown
on the screen

The correct value
was shown

Pass

8 Turn on the
greenhouse and
check the led
element matches

The value from
the current device
status dictionary

The correct value
was shown

Pass

OCR Programming Project Candidate Number:

211

the dictionary
value

should be shown
on the screen

9 Turn on the
greenhouse and
check the fan
element matches
the dictionary
value

The value from
the current device
status dictionary
should be shown
on the screen

The correct value
was shown

Pass

10 Turn on the
greenhouse and
check the window
element matches
the dictionary
value

The value from
the current device
status dictionary
should be shown
on the screen

The correct value
was shown

Pass

Review
Whilst the gui is ran the greenhouse measurements and device statues are updated every 2 seconds.
The system is not stopping the gui due to the clock object being used. This means that the GUI continues
to function whilst the values are updated. Up until this stage I have been developing the GUI on my
windows computer. However, this stage required the GUI to be ran on the Raspberry Pi for the first time
as live data values from the enviro class are being taken and then displayed in the GUI. When moving
over I realized that kivy was acting very strangely. One clicks of the mouse was being detected as
multiple clicks in random locations on the screen by the kivy backend. This is obviously a major issue and
was rendering the GUI unusable. It seems this is a raspberry pi specific issue as I’ve not been able to
replicate the issue on my desktop. Having looked online I was not able to find any obvious solutions to
this issue. Below is a table of the different steps I tired to solve the issue which has had no effect.

• Reinstall kivy
• Downgrade kivy to version 1 from version 2
• Swapped mouse
• Changed the backend window provide used by kivy
• Connecting via VNC
• Reinstalling the whole Os on the PI
• Installing a custom OS which had kivy supposedly “setup” on It

The only solution I found to this problem was to remove a line from the kivy config file relating to the
function of the mouse. Above is a screenshot of the default kivy config file on the raspberry pi. For some
reason removing the “device_%” line fixed all the issues with the mouse. The kivy config file is stored in
the following path by default “<HOME_DIRECTORY>/.kivy/config.ini”. I was successfully able to modify
the config file for the “Pi” user account. However, if you recall to the LEDs iterative stage, I am being
forced to run the neopixels library using sudo. This means the python installation used will be the sudo
root accounts and not the pi account. The root account is a protected directory, and I was not able to

OCR Programming Project Candidate Number:

212

edit the root accounts config file so the issue would persist when running the complete program.

To get around this issue for good I am now having to specify the path to the corrected config file. In this
case I am storing the correct config file with the line removed inside the same directory as the
greenhouse code. The os library is used to set kivy environmental variables. I have set the kivy home
directory to the path of folder containing the correct config file. This gets around the restriction on
editing the root users kivy config file and means the mouse click issue is solved.

Iterative stage 13 – System log
Overview
This stage will focus on implementing the required methods to perform the functions of the system log.
The system logs job is to display to the user any events that are performed by the to be developed main
management method such as the window being opened. As mentioned during the Kivy GUI iterative
stage I have not been able to get the scroll view working. In the interests of time, I have decided to not
mess about any further with the scroll view and instead swap to a label which I can just update the text
of. This means the user will not be able to scroll back to view past events, but I feel there is not much to
be gained from a historic view.

Requirements
The system log will be responsible for showing the user recent actions carried out by the greenhouse.
The log will work in the style of a queue with new events being added to the end of the log and then
when the maximum number of events which can be shown on the screen is reached the oldest element
in the log will be removed. The system log will be stored in the form of an array so I can keep the items
in order. One method will need to govern adding events to the system log and another will return the
log. The system log will be implemented into the greenhouse manager class which I’m using to perform
all the management tasks of the greenhouse.

Class Diagram

The system log array is going to be created when the class is initialized and as a private array. The public
getter method get system log will be used to return the contents of the array. Whilst the add to system
log method Is going to add new events to the array and make sure it does not go over size.

GreenHouseManager

-systemLog: arrary

+getSystemLog()
+addToSystemLog()

OCR Programming Project Candidate Number:

213

Pseudocode

Development log

Following my pseudocode, I have created a blank array inside the class constructor of the manager class
which I will use to store the greenhouse events.

Having done some quick testing inside kivy I feel the maximum number of lines that can be shown in the
space I’ve left for the system log is 11. Since the array is private there is no scenario the length of this
array will ever be allowed to go above 11 as every time a new event is added it must use the setter
method add to system log. For this reason, I am just checking if the length of the array is 11 as apposed
to using an inequality sign. This is going to be true for all, but the first 11 events added to the log after
system start. In this case adding another event is going to make the log too large so I pop the oldest

OCR Programming Project Candidate Number:

214

event from the list in index 0. After that regardless of whether the array is oversize of now, I want to
append the value passed to the method to the end of the system log.

Originally, I was going to just return the array via the get system log method. However, I decided it
would work better if I formatted the array into a string which can then easily be displayed inside python.
To do this I’m just the join method. Which joins all the elements inside the system log with a new line
character. This means when the string is displayed in kivy it will appear as 11 lines each of a unique
system event.

I have taken the liberty to add a system event to the log inside the class constructor to notify the user
that the greenhouse has started. All system events will begin with a time stamp to let the user know
when the event happened. To do this I am using the same time method as before with slightly different
formatting so that the hour, mins, and seconds are displayed. This is the format that will be used for all
system log events time stamp and then the event that has occurred.

The system log is going to need to be continually updated during the running of the greenhouse just like
for the device measurements and status. To do this a method called update system log has been written
inside the kivy main app class. As this method will be added to the clock it has the unused dt parameter.
This method simply sets the text value of the system log element to be equal to the string that is
returned by the get system log.

This method has then been added to the clock during the built method of the main app so that it will be
ran continually at 2 second intervals if the greenhouse is in operation.

Testing plan
As I have not developed the main management class which will be controlling the greenhouse
environment no events will be automatically added to the system log. For this reason, I am going to
have to manually add events to the log to check that is working. I will add the events using the add event
method so that it is done in the same way as it will be used later in development when the events are
added depending on actions taken by the greenhouse.

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Add 1 event to
the system log

It should be
displayed on the
system log

The event was
displayed in the
system log

Pass

OCR Programming Project Candidate Number:

215

2 Add 11 events to
the system log

They should all be
displayed on the
screen

The events were
all added to the
screen

Pass

3 Add a 12th event The oldest event
should be
removed, and
then newest
event should be
added to the
bottom of the log

The oldest event
was removed, and
the new event
added to the end
of the log

Pass

Review
The system log would at first seem like quite a complex problem however it was one of the faster
features to implement. Given more time I would have tried to get the scroll view working so that the
user could scroll through all the system events that have occurred. I do have a feeling that the issues
with the scrollview not working were more on the side of kivy. If I was to do this project again, I would
be using a different graphical user interface module which is more robust than kivy. So far, all the major
issues I have faced have been down to external libraries such as kivy and neopixels as opposed to logic
errors with my own written code. This is very frustrating as despite following the help documents for
these libraries problems still occur which take countless hours to fix which could be better spent.
Another feature I have not included is the ability to export and save system log events. This would be a
useful feature for debugging for the end user which would have been nice to implement given more
time.

Iterative stage 14 – A few adjustments to the GUI
Overview
As previously alluded to I am going to be removing the remote access section of this project. I have also
regrettably decided to strip out the email alerts feature and the ability to change the current setting file.
Below I will discuss how I would have implemented these features and outline the changes to the GUI
that I have done to remove these sections. When thinking through how the greenhouse will function it
has come to my attention that the user will want to be able to select the speed at which the LEDs run at
and that a demo feature might be handy. This feature would just turn on all devices and would be ideal
for demonstration purposes to potential clients. So, I will be implementing these two new features
quickly as they both draw on code that has either been developed or will be developed later.

Development log –

Remote access
The remote access feature was going to include a login log much like the system log I’ve just
implemented this would let the user know when somebody logs in to the system remotely and other
login events. I would have implemented this log in the same was as the system log. For the actual
remote access part, I had not completed much research into how to implement this. However, I would
have been looking for a library that supported the implementation of remote access to a specific
raspberry pi application. The libraries that spring to mind is putty, VNC or a variant of SSH which
supported remote desktop. The key to this would have been the ability to limit the access to just the
greenhouse application as there are many applications such as vnc which out of the box provide remote

OCR Programming Project Candidate Number:

216

access to the raspberry pi. Since this feature is no longer going to be part of the project, I have removed
the section inside the settings page for it.
Settings file
The user was originally going to have the ability to swap between different saves so that if they swapped
the plant inside the greenhouse, they could select a previously used settings file to load the right
parameters etc for that plant. To implement this feature, I was planning on creating a new folder each
time a user made a new save file. This folder would be the name of the save which the user would see
when they select a save from the dropdown. This folder would contain the settings, parameters and
devices text files which are the 3 files which store all the data for this project. When the user selected a
new save I would either copy the contents of the folder into the same path as the main python files or
adjust the path inside the various functions which accessed and wrote to these files so that they point to
the correct folder. I would have likely gone for the copy method as it would have saved me having to
edit the file paths wherever I have opened the files inside python. I’ve simply removed the kivy code
inside the kv file so that the settings section of the full settings page is no longer shown.

Email alerts
The email alerts feature would have been straight forward to implement using the python smtpd library.
I would have written a function which when called sent an email to the user’s email detailing the current
readings of the greenhouse and a couple of other stats such as the average temperature during the day.
The smtpd library needs an email server to send the mail from and for this I would have probably used
gmail as its free and they give full access to the required features to link to smtpd. I would have then
added this function to the clock at the interval set by the user so that an email was periodically sent out.
This would have been a nice feature to implement but I’ve had to axe it due to time constraints. This
section has been removed from the settings page too.

Demo button
In place of the free space created on the full settings page I am going to be adding a demo button which
when pressed will run through a demo of the greenhouse.

OCR Programming Project Candidate Number:

217

Above is the code for the demo button. It features a dark blue background container that I’ve made
using a label. A title to let the user know what the button will do and the button itself which when
pressed is going to run a method called demo which will put into action the steps required to turn on all
the devices in the greenhouse. There is also a screenshot of how this demo button looks above.

OCR Programming Project Candidate Number:

218

Currently there are two modes for the greenhouse on and off. These are both selected using the big
status button on the main screen and are then saved into the settings file. Later, I’m going to be using
this value as a flag for if the greenhouse manager runs its main management function to turn on and off
devices. I’m going to add a 3rd mode called demo which if equal to the current setting will trigger a
special demo function as opposed to the normal management algorithm. I want the status button on
the front page to shown when the mode is demo. So, to do this I have added a new section to the
update status toggle method which is responsible for updating the appearance of the button when the
user enters the main menu screen. Lines 74-76 now account for the final case where the mode is not off
and not on so hence must be demo. In this case the color of the button is made light blue which is going
to be the theme of demo which matches the demo button is made a second ago on the settings page. I
don’t want the user to be able to select demo mode from the main screen, so I’ve left the status toggle
method the same which is responsible for changing the mode when the user clicks the status button on
the main menu. As it stands when the user is in demo mode and clicks on the status button the
greenhouse will swap to off mode and from there the user can click again to go to on mode.

The demo method belongs to the settings screen class and is going to be called when the user clicks the
demo button. Making use of the new system log I have first added a system event which will pop up on
the system log to let the user know demo mode has been entered. Then the status setting is changed to
demo mode and finally the settings file is saved so that the changes will be loaded next time the
greenhouse is started.

OCR Programming Project Candidate Number:

219

Now that the system log has been implemented, I have added two events to the status toggle method
on line 91 and 104 which will let the user know that they have turned the greenhouse on and off using
the big status toggle button on the main menu.

LED speed setting
The led class has two functions the snake and flash which both make use of delays to dictate how fast
they move. I have decided that the user will be able to select the time delay themselves. To do this I’m
going to be adding a new setting to the settings text file and then adding a section on the settings page
to allow the user to enter the speed.

OCR Programming Project Candidate Number:

220

OCR Programming Project Candidate Number:

221

Above is a screenshot of the kivy code which produces the LEDs section where the user is going to be
able to enter a custom speed/time delay for the leds.

The save button is binded to a method called set led speed which in turn calls a method of green house
manager called set led speed with an argument of the text value of the text input box passed to it.

The set led speed method of the greenhouse manager class calls the set setting method to set the value
of speed and then uses update settings to save this to the file. The advantage of having my setting
stored in a dictionary as opposed to an array is situations such as this. Where I am adding a brand-new
setting. If I was using an array, then passing speed for the first time to set setting would cause an index
error as the method would try to assign the speed value to the index which does not currently exist. A
dictionary on the other hand first looks to see if that key is in the dictionary and if so, updates its value
and if not just makes a new key with no error.

At the end of the update displayed general settings function I have added this line so that the hint text
of the speed input box is updated to be equal to the current value of the speed. This just helps to let the
user know what they need to enter and the current value for references.

OCR Programming Project Candidate Number:

222

As the update displayed general settings function is only called on entry to the page there is a situation
where the user updates the value and then the hint text is still equal to the old value until the user
leaves the page and reenters the page so for this reason I’ve added the same line to the end of the set
led speed method so that it’s also updated when the value is set. This line needs to be in both functions
as the on-entry case makes sure its up to date when the gui is loaded and the set led speed case if for
when the user makes a change to the speeds value. I’ve also set the text value of the text input box to
blank so that after a user enters a new value and saves it the box is blank and ready for next use.

Pressure
I have also realised that there is no effective way with the equipment I have installed in the greenhouse
to affect the pressure inside the greenhouse. This means the user should not be able to adjust the
pressure parameter on the parameters page as I’m not going to be monitoring this value.

OCR Programming Project Candidate Number:

223

Due to this I have taken out the pressure text box from the green house parameters area and
rearranged the other elements, so they fit together. The user is no longer able to set a desired value for
pressure and I have also taken the parameter out of the parameter text file. I also had to remove the
validation in the update parameters method so that the method did not try access a text input box
which no longer exists, and I also removed the section of update displayed device parameter which set
the pressure value on the parameters page. The pressure is still displayed to the user on the main menu
they just no longer can tell the greenhouse what their ideal pressure is since the greenhouse hasn’t got
any mechanism to reach that target.

Test plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Enter a led speed
and click save

The value should
be saved to the
settings file

The value was
saved to the
setting file

Pass

2 Click the demo
button

The mode should
swap to demo
and be saved in
the settings file

The mode was set
to demo and
saved and

Pass

OCR Programming Project Candidate Number:

224

and be shown on
the main menu in
the status toggle.

displayed in the
status button

Review
The gui has now been tidied up a little so that redundant sections have been removed and two new
features have been accounted for and implemented into the gui. In later stages I will be making use of
the new demo mode and the led speed to change how the greenhouse is functioning. It would have
been nice to implement the features which i have had to remove in this section however without doing
so I believe the project would have stretched on and possibly doubled in size. I hope that this iterative
stage has demonstrated how I would have implemented these features and that it was time which led
me to remove them from the project.

Iterative stage 15 – Turning off all devices
Overview
There are two scenarios where I am going to want to turn off all devices. When the greenhouse system
is started there needs to be code to ensure that all devices are off/closed to account for situations
where the greenhouse has say crashed and then been restarted leaving certain devices such as the fan
still in operation. Since the current device statuses are set as off during initialization of the greenhouse
manager class and there is no way to query the state of a device after a crash, I need to ensure the
actual state and the recorded device state match to avoid and unexpected behavior from the
greenhouse. The other situation is when the user sets the greenhouse status to off and so any active
devices should be turned off.

Requirements
Code will be written as the first code executed inside the class constrictor which will turn off all devices
regardless of the state that is recorded for them inside the current device status dictionary. This can
potentially cause errors if for example an attempt is made to turn off a led thread, but none exists. On
the other hand, devices such as the relay do not care if you turn if off and its already off. So adequate
error handling needs to be implemented on a case-by-case basis. Another function is going to carry out
the same actions, but this time will be dictated by the current device status and so if a device is recorded
as being already off no attempt will be made to turn it off. This method will only be used after the class
has been initialized and thanks to the code about to be implemented, we can be confident that all
devices will match their recorded status.

Class diagram

Pesudocode

GreenHouseManager

-currentDeviceStatus:
dictionary

+turnOffAllDevices()

OCR Programming Project Candidate Number:

225

Development log

OCR Programming Project Candidate Number:

226

The greenhouse manager is going to need to be able to directly control all devices inside the greenhouse
using the classes I have developed and to get readings from the greenhouse using the greenhouse. Due
to this I have initialized objects for all the different sensors and devices. So that the class can control
them. I believe this shows the justification for the changes I made earlier to the relay class so that I was
able to pass the relay number once instead of each time I ran on or off. Instead, the relay is passed upon
initialization of the class and then from then on, I can just call that object and then the on or off method
without worrying about trying to remember which bus it’s on.

OCR Programming Project Candidate Number:

227

Inside the class constructor of the greenhouse manager, I have added the code to turn off all the
different devices. To understand which devices would need error handling I made sure all devices were
off inside the greenhouse and then ran the code without any error handling implemented. The only
error produced was an Attribute error when trying to end and running led threads. To account for this I
have added a try except to line 54 and 61 where I am attempting to close any currently running threads.
Two try except statements are used despite the error being the same for both lines as if line 54 is ran
and no threads are running an error would occur and the except part ran instead of an attempt being
made to close any running random flash threads if they were nested inside the same statement. Now
that this code is implemented the moment the greenhouse is ran all devices are ensured to be in there
off state and no possible collisions or unexpected behaviors can occur whereby the greenhouse thinks a
device is off but it’s on. Which could be fatal for the plant if it’s cooked by the lamp of flooded by the
pump.

The turn off all devices method is a much stricter method which will achieve the same results as the
code written into the class constructor. This method will check the status of each device and if it is not

OCR Programming Project Candidate Number:

228

already off/closed then it will try to turn off the device. Since we can be confident the stored current
device status is the same as the actual device status no error handling is needed as there should never
be a situation where a device is incorrectly turned off and an error created.

The first device this method deals with is the heating. I am a big fan of beautiful code readable code and
so I have used the not keyword to create a very readable statement to see if the current device is not
off. In the case the status is not off then the lamp is turned off and the status of the lamp is set to off.

The same process is carried out for the leds. However, there are two extra checks to ensure that neither
of two flags are true. Since I am using threading for the function of the led snake and disco extra care
needs to be taken to ensure there is never an empty thread left running eating up processing power or
even worse multiple threads at the same time. For these reasons I’m going to be using a flag to record If
I have ever started a snake thread or a disco thread. This will allow me to periodically check if a thread is
running and it should not be then turn it on. The flags are declared in the class constructor and have an
initial value of false. So far, no code will make them true as I’ve not implemented anything which begins
a led thread yet. The reason I’m not turning the leds off if a thread is running is that the led off method
effectively sets the lights to a rgb value of 0 which won’t stop the threads it will only momentarily turn
off the led strip. I will deal with the threads in a moment. For the mean time if the leds are not off and
no threads are running then they can be turned off using the leds off method and then their status is set
to be equal to off.

OCR Programming Project Candidate Number:

229

The fan, pump and window are all turned off in the same way as the lamp.

The snake flag is only going to be true if I have set it so after starting a led snake thread. If the turn off all
device’s method is called then its time to turn off this thread. To do this I query the flag and if its true a
thread is indeed running and needs turning off, so I then call the led stop rainbow method to stop the

OCR Programming Project Candidate Number:

230

thread. Now the thread is running the flag is set to false and finally the status of the leds are set to be
off. The process is the same for any running disco threads. This may seem like being over cautious
however implementing this robustness removes any potential issues which could be a nightmare to
solve if many hundreds of threads are running at once and is also just good practice.

The main function of this greenhouse responsible for making decisions regarding turning devices on and
off will most likely be ran in a loop. I want to post an event to the system log when all devices are turned
off informing the user that this has happened. If the state of the greenhouse is off, then on each
iteration this turn off all device’s method will be called to make sure all devices are off. This means that
without any limitation each iteration would add a new all devices off event to the system log. This would
spam the log and just look like a bit of a mess. For this reason, I’ve added a check to see if the last
element in the system log array and hence the latest event to be added contains the words all devices
off. If it does then no new event is added. A straight up comparison between the last event and the new
event can’t be made since the time stamps will be different meaning, they won’t return true when being
compared. Therefore, I’ve used the in keyword to see if the string is inside the last event in the array.

Test Plan

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Manually turn on
all devices and
then create an
instance of the
greenhouse
manager class

All the devices
should be turned
off when the class
is initialized

All the devices
were turned off

Pass

2 After an object
has been created
turn on all the
devices manually
then call the turn
off all device’s
method

All the devices
should be turned
off and their
status set to off

All the devices
were turned off
and their status
was set to off

Pass

Review
The implemented code inside the class constructor in this stage is going to be crucial to ensuring there
are no scenarios where the greenhouse has a different recorded device status to the actual device in
question. Whilst the turn off all device function will be used when the greenhouse mode is off to ensure
there are no functioning devices.

Iterative stage 16 – Main Greenhouse manager function
Overview
This stage is going to focus on building the main part of the greenhouse which is going to control all the
different devices based on the different environment readings coming from inside the greenhouse. I am
going to run this function on the clock at an interval of 2 seconds. Each time the function is called the

OCR Programming Project Candidate Number:

231

current greenhouse status will be checked and depending on the mode certain actions will be taken. The
function should add any changes made to the system log and make sure to set the status of devices
when they are turned on or off.

Requirements
The main greenhouse manager function is going to track all running processes and take particular care
to shut down any open threads related to the leds if they are not currently needed. When the
greenhouse status is demo then a special script will be run to turn on all the devices so that the user can
observe the greenhouse in action. Continuous mode is going to just carryout the management and
monitoring of the greenhouse regardless of the time whilst when in scheduled mode the greenhouse
will only be operating if the current time is inside the operating time specified by the user.

Class diagram

• ledsLastChangeTime is going to store the time at which the leds were last turned on or off
• windowLastChangeTime is going to store the time at which the window was last opened or

closed
• fanLastChangeTime is to record the time at which the fan was last turned on or off
• snakeFlag is to record if a snake thread is active
• discoFlag is to record if a disco thread is active
• timeOkayFlag is to record if the current time is between the set interval of the user
• startTime is to hold the time which the user wants the greenhouse to function from
• endTime is to hold the time which the user wants the greenhouse to function until
• The main function is going to be the code to carry out the greenhouse functions

Pseudocode

GreenHouseManager

-ledsLastChangeTime: float
-windowLastChangeTime: float

-fanLastChangeTime: float
-snakeFlag: bool
-discoFlag: bool

-timeOkayFlag: bool
-startTime: int

-currentTime: int

+main()

OCR Programming Project Candidate Number:

232

OCR Programming Project Candidate Number:

233

Development log –

The main function is going to be added to the clock and needs to have the parameter dt so that the
clock does not create an error.

When the function is running the first thing this is checked is if the greenhouse status is off. If the
greenhouse is not off, then the statement evaluates to true, and the indented code block will be
run.

When the greenhouse mode is demo, this means that all the devices need to be turned on.

Firstly, the lamp is checked if the lamp is not already on then the lamp is turned on and its status set
to be equal to on. An event is also added into the system log. The code for this is like the turn off all
devices function just with the device being turned on and the check seeing if the device is not on as
opposed to not off.

The process is the same for the pump.

OCR Programming Project Candidate Number:

234

Since this mode is a demo designed to show off the features of the greenhouse, I am thought it
would be good to turn on the random flash mode which I developed for the led class. As threads
pose a potential issue if left unchecked, I am using the disco flag to only try and start a thread if
there are no running threads. The flag is defined inside the class constructor and is false by default
as no threads will be running when the greenhouse is started. Without this each clock cycle a new
random flash thread would be created causing major issues related to memory and the led strip
would be functioning erratically. The function start random flash is called to being a new random
flash and is passes the users saved speed value giving them control over how fast or slow the flashes
happen. As the speed is stored as a text value from the text input button, I have casted the value to
a float. I went for a float over an integer so the user could tune the speed more precisely. Once the
thread is started the disco flag is set to be equal to true. The device status of the leds is also changed
to on. Finally, an event is added to the system log.

The last two devices the fan and the window are both turned on or opened in the case of the
window.

OCR Programming Project Candidate Number:

235

When the greenhouse is in the continuous mode, I want the greenhouse conditions to be
monitored. The greenhouse conditions also need to be monitored when the mode is scheduled, and
the time is between the start and end time that the user has set. Since the code for continuous and
scheduled mode is the same the only difference being when it is run, they can be combined into the
same statement. Providing the mode is continuous or the time is between the start and end time
the main code should be ran. I am using the time okay flag to signify if the current time is within the
set range by the user that the greenhouse should function in. No check is needed to see if the
greenhouse is actual in scheduled mode as all other modes are covered previously and in the case
the mode is scheduled then all that matters is that the time is okay.

At the beginning of the main function the time okay flag is set. Its initial value is true as the time is
thought to be within the allowed boundaries unless told otherwise. I decided the best way to
compare time was to simply convert it into a number and then compare values. For example, when
seeing if 09:00:00 Is larger than 10:00:00 both can be converted into numbers with the colons
removed as follows 090000 and 100000 and then comparing these two values shows that 090000 is
not larger than 100000. To convert the start time into this format It is first got from settings using
the get setting method. At this stage, the time is in string format as follows hhmm:ss. The time is
then split into 3 parts using the split method in python to sperate the values about the “:”. The three
values are stored in an array so can then be joined together using the join method without any
character separating the joined values. The time is now in the following format as a string hhmmss.
Finally, the time is converted into an integer to allow me to compare it to other time values. This
process is carried out for both the start and end time. The current time is also got in the format
hhmmss and then converted to an integer so a comparison can be made to see if the current time is
between the start and end boundaries. An inequality looks to see if the current time is indeed within
the start and end boundaries and if it is not then the flag is false so that the greenhouse wont
function during the current cycle.

OCR Programming Project Candidate Number:

236

Heating

The first device inside the greenhouse which I will be automating is the heating lamp. When the
heat is too low the heating lamp needs to come on until the temperature reaches the set level by
the user. If the user has selected the heating lamp status as on, then heating lamp algorithm will be
carried out.

The first mode the heating lamp can be in is adaptive this means that each cycle the temperature
will be checked to see if the lamp needs turning on. This is as opposed to the heating lamp being in
manual mode which I will implement later.

When I initially implemented the code to turn the heating lamp on and off, I was checking to see if
the temperature was less than the temperature parameter and if that was the case then the lamp
was turned on and if the temperature was too high then the lamp was turned off. This caused an
issue when the temperature reached the parameter value the lamp would be turned off however
also instantly the temperature would then drop causing the lamp to turn back on and the
temperature to rise above the parameter value and the whole process to repeat. This made a
continuous loop where the lamp was being turned on and off continually when the temperature was
near to the parameter value. After some research into how thermostats operate, I decided to
implement an algorithm where the greenhouse would be heated a little above the parameter value
and then allowed to fall a little below the parameter value before the lamp was turned on again. As
seen in the diagram above this there will be an upper and lower limit based on the target

OCR Programming Project Candidate Number:

237

temperature. The effect of this is that the average temperature will be the desired parameter value
without the issue of the light flickering on and off.

Above is the flow chart for the heating algorithm that I am going to be using to monitor the
temperature. When the temperature is 2.5 degrees less than the desired temperature value the
heating lamp is turned on. Otherwise, if the temperature is greater than or equal to the
temperature parameter value + 2.5 then the lamp is turned off. I have recorded that it takes the
greenhouse roughly 3 minuets for the temperature to fall by 2.5 degrees so with this algorithm
implemented it should take 6 minuets from the maximum temperature being reached and the lamp
being turned off to the temperature reaching the lower bound of the temperature and the lamp
coming back on.

OCR Programming Project Candidate Number:

238

Here is the implementation of the temperature algorithm which I have created. When the
temperature is less than or equal to the user desired temperature parameter – 2.5 degrees the lamp
is turned on as long as it’s not already on.

When the temperature inside the greenhouse reaches the user set temperature parameter + 2.5 the
lamp is turned off. This leaves a 5-degree window where the temperature will fall from the upper
bound until it hits the lower bound and the process begins again.

When the mode is not adaptive it must be manual. In manual mode the lamp needs to be always on.
So, each cycle there is a check to see that the lamp is on and if it is not then the lamp is turned on.

If the device status is not on, then it must be off. In this case the lamp is turned off so that it is not
functioning as the user has set that the lamp should not be being used by the greenhouse.

OCR Programming Project Candidate Number:

239

The next device to be controlled is the pump. As soil absorbs water, I have found that once the soil
moisture level set by the user on the soil moisture sensor is reached there is a suitable time gap
before the sensor then reads as being too low on moisture. For this reason, the pump can simply be
turned on when the plant needs water and then turned off when it does not without any special
algorithm to stop the pump cycling between being on and off. This is good since the soil moisture is
binary in the sense that it can only be detecting moisture or not detecting moisture so the
previously implemented algorithm for the lamp could not work in this case. The moisture class is
used to see if the plant needs any water and if this is the case the pump is turned on.

When the moisture sensor is not detecting moisture, the plant does not need to be watered so the
pump is turned off.

Just like for the lamp when the pump is in manual mode it is always on.

OCR Programming Project Candidate Number:

240

When the pump is disabled by the user the pump is turned off so that it is not functioning.

Controlling the leds are a little different since unlike the lamp I cannot wait for the light value to
slowly fall away before turning the leds on since the moment the leds are turned off the light will
drop instantly. Without some sort of algorithm governing the leds they would just constantly turn
on surpass the light parameter then turn off and drop below the parameter value instantly and then
repeat the whole process again. For this reason, I’m going to make it so that the leds must have
been in their current state for more than 10 minuets before there status can be changed. To do this
I am using the leds last change time variable. This is defined inside the greenhouse manager class
constructor and initially has a value of 0. When I need to check if the leds have been in there current
state for more than 10 minutes I get the current time using time.time(). This just provides the time
in seconds since an arbitrary moment in the 1970s called the epoch. Since I am only worried about
change in time it does not matter that the actual time is not related to the current time what
matters is the difference between two readings. I then deduct the leds last change time value from
this value and if it is bigger than 600 seconds then the leds have been in their current state for more
than 10 minuets and so the algorithm will change their state if needs be. As the led last change time
is 0 to begin with the algorithm will change their state on first pass as the time – 0 is larger than 600.
From then onwards the leds last change time will be updated when I change the led state and the
value produced from deducting this value from time will be the number of seconds since the leds
were last turned on or off.

OCR Programming Project Candidate Number:

241

Providing the leds have been in their current state for more than 10 minutes then I check to see if
the light reading from the greenhouse is less than the light parameter and if it is the greenhouse led
strip is turned on. In this mode I am setting the whole strip to be white. When the leds are turned on
I also set the leds last change time to be equal to the current time.time value.

If the light value is high enough then the leds need to be off. In this case I only set the leds last
change time if the lights are on and I turn them off. If the last change time was set regardless of
whether the leds being turned off from the on state, then effectively my algorithm would just be
checking every 10 minutes if the light value is too high or low.

If the user has selected that the leds should be working in snake mode, then providing no snake
thread is currently running I am being a new led rainbow with a speed equal to the value entered by
the user. The snake flag is made true when I begin a new thread to make sure that only one thread
is in operation at once.

OCR Programming Project Candidate Number:

242

The same process is carried out for if the mode is disco where a random flash is started. This time
the disco flag is made true.

The final mode is manual which means the leds need to be on continually. In this case the led strip is
set to be white.

At the end of the snake algorithm I am checking to see if the mode of the led strip is not snake mode
but the snake flag is true indicating there is a runnign snake thread. When this is the case the snake
thread should not be running and needs to be stopped. The rainbow is stopped and the flag made
false as there is now no running thread.

The same process is carried out for the random flash thread to make sure there are no loose disco
threads which should not be running.

OCR Programming Project Candidate Number:

243

When the led device status is off the leds are turned off.

The fan is used to control two different environmental values inside the greenhouse. When the
temperature is too hot then the fan needs to be turned on and when the humidity is too high then
the fan needs to be turned on. Since the heating algorithm purposely overheats the greenhouse, we
need to wait until the temperature goes 2.5 above the temperature parameter reading before the
fan comes on. Otherwise, it will be working against the heating algorithm. When the humidity goes
above the humidity parameter the fan also needs to turn on.

When the temperature or humidity is too high the fan Is turned on.

When both the temperature and the humidity are low enough the fan is off.

OCR Programming Project Candidate Number:

244

When the fan is in manual mode the fan is always on.

The fan being in device status off means that the fan is always turned off.

The final device is the window. The window mirrors the function of the fan meaning when the
temperature is too high the fan and window both turn on and when the humidity is too high. The
window is always left open for at least 10 minutes to avoid the window opening and closing rapidly
when the parameter readings from the greenhouse are around their user set values.

When the temperature gets too high, or the humidity gets too high just like with the fan the window
is opened.

OCR Programming Project Candidate Number:

245

If the readings are okay, then the window is closed.

When the greenhouse mode is manual the window is always in the open position.

Finally, if the window status is set as off the window Is closed.

When the mode of the greenhouse is not continuous, or the current time is not between the start
and end parameters of the greenhouse then no devices should be functioning. In this case the turn
off all device’s method is used to ensure all devices are off.

OCR Programming Project Candidate Number:

246

The greenhouse can also be set to have a status of off and in this case the turn off all device’s
method is used to make sure all devices are off. At this stage the main method is complete and can
monitor all the different parameters inside the greenhouse and act accordingly as they change.

The greenhouse manage main method is added to the system clock inside the kivy main app build
method. I am calling the method every 2 seconds meaning that the greenhouse will be constantly
monitored and controlled.

Testing

Test Number Test Plan Expected
Outcome

Actual Outcome Pass/Fail

1 Run the demo
mode

All the devices
should come on

All the devices
came on

Pass

2 Set the
greenhouse mode
to continuous

The program
should begin to
monitor the
greenhouse

The program
started to turn on
some of the
devices inside the
greenhouse
showing that it
was working

Pass

3 With the heating
in adaptive mode
set the
temperature
parameter to a
value above the
current
temperature
reading

The lamp should
come on and heat
the greenhouse
until the
parameter + 2.5 is
reached

The lamp came on
and then went off
once the
greenhouse was
heated

Pass

4 Wait for the
temperature to
drop by 5 degrees

The lamp will
come back on and
reheat the
greenhouse

The lamp came
back on and
heated the
greenhouse up
again

Pass

5 Set the heating
mode to manual

The lamp will
come on
constantly

The lamp came on Pass

6 Set the heating
status to off

The lamp will turn
off

The lamp was off Pass

7 With the pump in
adaptive mode
and the soil dry
see that the pump
comes on

The pump should
come on

The pump came
on

Pass

OCR Programming Project Candidate Number:

247

8 Wait for the
pump to turn off
the moisture
sensor

The pump should
turn off once the
plant is watered

The pump was
turned off when
the moisture
sensor detected
moisture

Pass

9 Make the pump
mode manual

The pump should
be constantly on

The pump was on Pass

10 Set pump status
as off

The pump should
be off

The pump was off Pass

11 With the leds in
adaptive mode
and the light
parameter above
the current light
level see that the
lights come on

The lights should
come on and stay
on for 10 minuets

The lights stayed
on for 10 minuets

Pass

12 See that the lights
stay off for the
next 10 minuets

The lights should
stay off for 10
minuets

The leds were off
for 10 minuets

Pass

13 Set the light
parameter below
the current light
level

The leds should
be off

The leds were off Pass

14 Set the led mode
to snake

The snake should
begin on the led
strip

The led snake
began

Pass

15 Change the led
mode from snake
to disco

The leds should
swap from snake
mode to disco and
end the snake
thread

The mode
swapped to disco,
and the thread
was closed

Pass

16 Make the led
mode manual

The leds should
be filled with
white

The leds went
white

Pass

OCR Programming Project Candidate Number:

248

17 Set the led status
as off

The leds should
go off

The leds were
turned off

Pass

18 Set the
temperature
parameter at least
2.5 below the
current
temperature

The fan and
window should
come on for 10
minuets

The fan and
window came on
for 10 minuets

Pass

18 Set the humidity
parameter lower
than the current
humidity

The fan and
window should
come on for 10
minuets

The fan and
window came on
for 10 minuets

Pass

19 Set fan mode to
manual

The fan should be
constantly on

The fan was
always on

Pass

20 Set fan status to
off

Fan should be
turned off

The fan was
turned off

Pass

21 Set the window
mode to manual

The window
should open

The window
opened

Pass

22 Set the window
status to off

The window
should close

The window
closed

Pass

23 Set the
greenhouse mode
to scheduled and
make sure the
current time is
between the start
and end times

The greenhouse
should function as
usual

The greenhouse
was functioning
and controlling
devices

Pass

24 Set the start and
end time so that
the current time
is not inside the
range

The greenhouse
should not
function

The greenhouse
did not operate,
and all devices
were off.

Pass

OCR Programming Project Candidate Number:

249

25 Set the
greenhouse status
as off

The greenhouse
should not
function

The greenhouse
did not function,
and all devices
were off

Pass

Review
This stage saw the development of the main function which acts as the backbone of this greenhouse. I
believe this stage was a success as no errors were produced in the test plan thanks to the robustness of
the previous classes I have developed allowing me to control devices safely, the use of a dictionary to
track device states so that no collisions happen like trying to turn on a device which is already on and via
the use of two flags to keep track of and effectively close down threads from the led class. At this stage
the greenhouse is fully functional and can carry out the control of a plant environment inside the
greenhouse.

Iterative stage 17 – Graphs
Overview
This stage will be focused on the implementation of the graph page and the mini graph on the main
menu. These graphs will display to the user historic sensor readings from the greenhouse and give the
user the ability to change the graph axis and time scales. This stage will see the implementation of
sensors readings being saved to a file for use by the graph section of this project.

Development log
Unfortunately, after many hours spent attempting to implement graphs into kivy I have conclude that it
is no possible. Whilst there is a graphs feature in kivy its function is erratic and cannot plot new data
points as they are taken from the enviro class. Installing the kivy graph garden took in itself a good few
hour. Mainly since kivy somewhere along the line decided to change the way open source kivy plugins
should be installed but neglected to mention this fact anywhere. Due to this and other issues
encountered trying to implement graphs into kivy I have decided to remove this feature from my
program. This means my project will end here as the main functions of the greenhouse are now being
carried out with the user having full customization ability over the environment. The remainder of this
stage will show the changes I have made to the gui to take out the graph’s sections.

OCR Programming Project Candidate Number:

250

On the home page I have removed the section which was originally designed to show a mini graph of
live data from the greenhouse and in its place extended the size of the greenhouse status toggle button.

The graphs page has been completely removed from my code and the page has been taken out of the
screen manager. I have rearranged the navigation bar so that the 3 pages are grouped together
centrally.

Review
It would have been nice to implement graphs into this project as it would have served a useful function
for the user to see how the different environmental variables inside the greenhouse were changing. I
feel the size of this iterative stage does not do the amount of time I’ve spent trying to implement graphs
justice. Nevertheless, the greenhouse is now in a fully functional and complete stage. Which can be used
by an end user without any issues.

Overview
The greenhouse is now complete in this overview section I will briefly talk about the development
process outlining things that went well and things that proved to be a challenge.

The greenhouse system is developed so that it has the following features -

• Live greenhouse readings
• Live device status
• System Log
• Demo Mode
• Continuous mode
• Scheduled mode
• Update parameters
• Update settings
• Change device mode and status

From the beginning of this project my aim was to produce the system in an object-oriented modular
manor. I feel that using various classes contained inside their own files I have created robust libraries
which can be used for their respective uses by other programmers trying to solve the same problems as
me. When implemented inside my greenhouse system they perform the various functions required by
the greenhouse. I feel that the use of an object-oriented approach allowed me to never feel
overwhelmed by the amount of code that I have written and always have a good handle on how
different classes needed to interact inside the program.

The use of comments in my code meant I was quickly able to familiarize myself with the function of
different areas of my software when I had not been developing that section for a while. If I was going to
do this project again, I would probably do less commenting of code as I feel there was not the need to
comment every line of code.

The implementation of a thermostat style algorithm for the heating lamp was an interesting section to
develop. I had debated from the start of the project how I would solve the issue of the flickering lamp
and in the end, I felt the thermostat algorithm was the most elegant solution as this ensured the

OCR Programming Project Candidate Number:

251

average temperature would be equal to the users entered parameter. Without moving the temperature
too far either side of the desired value.

A major issue in this project was the use of Kivy which proved time and time again to be a source of
great frustration. With issues such as the phantom mouse clicks, countless installation errors and the
graphs implementation taking up a great chunk of the time I spent developing this project. One of my
greatest frustrations was the fact that the vast majority of the kivy online help documents would not
work when implemented into kivy.

Overall, I am very happy how this project has turned out I feel with more time I would have been able to
implement some of the bonus features such as the remote access and email alerts. However, at this
stage the greenhouse is fully functioning and capable of performing its main job of controlling a
greenhouse environment.

